

Handbook of Modules

Master Program Materials Science

Faculty of Mathematics, Natural Sciences, and Materials Engineering

Examination regulations as of 20.11.2013

Index by Groups of Modules

1) 1a Basics of Materials Science I

PHM-0144: Materials Physics (6 ECTS/LP, Wahlpflicht)	. 5
PHM-0110: Materials Chemistry (6 ECTS/LP, Wahlpflicht)	7

2) 1b Basics of Materials Science II

PHM-0117: Surfaces and Interfaces (6 ECTS/LP, Wahlpflicht)	. 9
PHM-0053: Chemical Physics I (6 ECTS/LP, Wahlpflicht)	11

3) 2 Methods in Materials Science

PHM-0171: Method Course: Coordination Materials (8 ECTS/LP, Wahlpflicht)13
PHM-0147: Method Course: Electron Microscopy (8 ECTS/LP, Wahlpflicht)15
PHM-0146: Method Course: Electronics for Physicists and Materials Scientists (8 ECTS/LP, Wahlpflicht)
PHM-0172: Method Course: Functional Silicate-analogous Materials (8 ECTS/LP, Wahlpflicht) 19
PHM-0148: Method Course: Optical Properties of Solids (8 ECTS/LP, Wahlpflicht)21
PHM-0149: Method Course: Methods in Biophysics (8 ECTS/LP, Wahlpflicht)23
PHM-0150: Method Course: Spectroscopy on Condensed Matter (8 ECTS/LP, Wahlpflicht)25
PHM-0151: Method Course: Porous Materials - Synthesis and Characterization (8 ECTS/LP, Wahlpflicht)
PHM-0157: Method Course: X-ray and Neutron Diffraction Techniques (8 ECTS/LP, Wahlpflicht)28
PHM-0173: Method Course: Finite element modeling of multiphysics phenomena (8 ECTS/LP, Wahlpflicht)
PHM-0153: Method Course: Magnetic and Superconducting Materials (8 ECTS/LP, Wahlpflicht)32
PHM-0154: Method Course: Modern Solid State NMR Spectroscopy (8 ECTS/LP, Wahlpflicht) 34
PHM-0206: Method Course: Infrared Microspectroscopy under Pressure (8 ECTS/LP, Wahlpflicht)
PHM-0216: Method Course: Thermal Analysis (8 ECTS/LP, Wahlpflicht)

4) 3a Conducting and Presenting Scientific Work - Seminar

PHM-0158: Introduction to Materials (= Seminar) (4 ECTS/	/LP, Pflicht)40
--	-----------------

5) 3b Conducting and Presenting Scientific Work - Laboratory Project

PHM-0159: Laboratory P	ect (10 ECTS/LP, Pflicht)4	1

6) 4 Materials Science - Major Topic

a) Physics of Materials

PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht)	.42
PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht)	44
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht)	46
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht)	48
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)	.50

b) Chemistry of Materials

PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)	.52
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)	54
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)	56
PHM-0162: Solid State NMR Spectroscopy and Diffraction Methods (6 ECTS/LP, Wahlpflicht)	.58
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)	.60
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)	62

c) Engineering of Materials

PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)	64
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht)	66
PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)	68
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht)	69
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht)	71
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)	73
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht)	75

7) 5 Materials Science Elective Topic (PO13)

PHM-0166: Carbon-based functional Materials (Carboterials) (6 ECTS/LP, Wahlpflicht)	77
PHM-0174: Theoretical Concepts and Simulation (6 ECTS/LP, Wahlpflicht)	79
PHM-0058: Organic Semiconductors (6 ECTS/LP, Wahlpflicht)	81
PHM-0066: Superconductivity (6 ECTS/LP, Wahlpflicht)	83

PHM-0060: Low Temperature Physics (6 ECTS/LP, Wahlpflicht)8	85
PHM-0114: Porous Functional Materials (6 ECTS/LP, Wahlpflicht)8	87
PHM-0050: Electronics for Physicists and Materials Scientists (6 ECTS/LP, Wahlpflicht)	39
PHM-0068: Spintronics (6 ECTS/LP, Wahlpflicht)9	91
PHM-0057: Physics of Thin Films (6 ECTS/LP, Wahlpflicht)9	93
PHM-0056: Ion-Solid Interaction (6 ECTS/LP, Wahlpflicht)9	95
PHM-0069: Applied Magnetic Materials and Methods (6 ECTS/LP, Wahlpflicht)9	97
PHM-0052: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (6 ECTS/LP, Wahlpflicht)9	99
PHM-0051: Biophysics and Biomaterials (6 ECTS/LP, Wahlpflicht)10	D1
PHM-0160: Dielectric and Optical Materials (6 ECTS/LP, Wahlpflicht)10	03
PHM-0059: Magnetism (6 ECTS/LP, Wahlpflicht)10	05
PHM-0048: Physics and Technology of Semiconductor Devices (6 ECTS/LP, Wahlpflicht) 10	07
PHM-0049: Nanostructures / Nanophysics (6 ECTS/LP, Wahlpflicht)10	09
PHM-0054: Chemical Physics II (6 ECTS/LP, Wahlpflicht)11	11
PHM-0161: Coordination Materials (6 ECTS/LP, Wahlpflicht)11	13
PHM-0113: Advanced Solid State Materials (6 ECTS/LP, Wahlpflicht)11	15
PHM-0162: Solid State NMR Spectroscopy and Diffraction Methods (6 ECTS/LP, Wahlpflicht)11	17
PHM-0167: Oxidation and Corrosion (6 ECTS/LP, Wahlpflicht)11	19
PHM-0164: Characterization of Composite Materials (6 ECTS/LP, Wahlpflicht)12	21
PHM-0163: Fiber Reinforced Composites: Processing and Materials Properties (6 ECTS/LP, Wahlpflicht)	23
PHM-0165: Introduction to Mechanical Engineering (6 ECTS/LP, Wahlpflicht)12	25
MRM-0052: Functional Polymers (6 ECTS/LP, Wahlpflicht)12	26
PHM-0168: Modern Metallic Materials (6 ECTS/LP, Wahlpflicht)12	28
PHM-0196: Surfaces and Interfaces II: Joining processes (6 ECTS/LP, Wahlpflicht)13	30
PHM-0122: Non-Destructive Testing (6 ECTS/LP, Wahlpflicht)13	32

8) 6 Finals

PHM-0169: Masterthesis (26 ECTS/LP, Pflicht)	136
PHM-0170: Colloquium (4 ECTS/LP, Pflicht)	137

Module PHM-0144: Materials Phy	ysics	ECTS Credits: 6
Version 1.1.0 (since WS15/16) Person responsible for module: apl. Pr	rof. Dr. Helmut Karl	
Contents: • Electrons in solids • Phonons • Properties of metals, semicondu • Application in optical, electronic, • Dielectric solids, optical propertie	and optoelectronic devices	
 structure, charge carrier statistic are capable to apply derived apply basic characteristics of semicond have the competence to apply the of solids and to describe their function understand size effects on mate 	ms and concepts of solid state physics s, phonons, doping and optical proper proximations as the effective mass or t ductor materials, nese concepts for the description of ele nctionalities,	the electron-hole concept to describe ectric, electro-optic and thermal properties
Workload: Total: 180 h 120 h studying of course content using 60 h lecture and exercise course (atten		
Conditions: basic knowledge of solid state physics		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Materials Physic Mode of Instruction: lecture Language: English Contact Hours: 3	CS	

Learning Outcome:

see module description

Contents:

- · Electrons in solids: Free electron gas, band structure, effective mass
- · Lattice dynamics: Phonons, phonon dispersion, acoustic and optical phonons
- · Properties of metals: Electrical conductivity, Fermi surfaces, thermal properties
- · Properties of semiconductors: Pure, intrinsic semiconductors, equilibrium conditions, doping
- Properties of dielectric materials: Propagation of electromagnetic waves, frequency dependent optical properties, polarization effects.
- Application in devices: Heterostructures, Schottky contact, pn-junction, solar cell, light emission and technological aspects

Literature:

- Hummel R. E. : Electronic Properties of Materials Springer 2001 (UP1000 H925)
- Burns G.: Solid State Physics Academic Press 1990 (UP1000 B967)
- Ashcroft N. W., Mermin N.D.: Solid State Physics (UP1000 A 824)
- Kittel C. : Introduction to Solid State Physics (UP1000 K 62)

Assigned Courses:

Materials Physics (lecture)

Part of the Module: Materials Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Assigned Courses:

Materials Physics (Tutorial) (exercise course)

Examination

Materials Physics

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Physics

Module PHM-0110: Materials Cl	nemistry	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof.	Dr. Henning Höppe	
Contents:		
 Revision of basic chemical con 	-	
 Solid state chemical aspects of 	selected materials, such as	
• Thermoelectrics		
 Battery electrode materia 		
 Hydrogen storage materi 	als	
 Data storage materials Pheephere and pigments 		
 Phosphors and pigments Ferroelectrics and Piezoe 		
 Heterogeneous catalysis 		
 nanoscale materials 		
Learning Outcomes / Competences The students will	5.	
 be able to apply basic chemica 	concepts on materials science problems	
	ructure-property relations of materials cor	
about symmetry-related proper	ties, chemical bonding in solids and chem	ical properties of selected compound
classes,		
 be able to assess synthetic app 	proaches towards relevant materials,	
 acquire skills to perform literatu 	re research using online data bases.	
Workload:		
Total: 180 h		
20 h studying of course content using	literarture (self-study)	
20 h studying of course content using	provided materials (self-study)	
80 h studying of course content throu	gh exercises / case studies (self-study)	
60 h lecture and exercise course (atte	endance)	
Conditions:		
The lecture course is based on the Ba	achelor in Materials Science courses	
Chemie I and Chemie III (solid state of	chemistry).	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module	·	•
Part of the Module: Materials Chen	nistry	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		
see description of module		

Contents:

see description of module

Literature:

- A. R. West, Solid State Chemistry, John Wiley, Chichester.
- U. Müller, Inorganic Structural Chemistry, Wiley-VCH.
- R. Dronskowski, Computational Chemistry of Solid State Materials, Wiley VCH.
- Textbooks on Basics of Inorganic Chemistry such as J. E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, or equivalents.
- Moreover, selected reviews and journal articles will be cited on the slides.

Assigned Courses:

Materials Chemistry (lecture)

Part of the Module: Materials Chemistry (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see description of module

Contents:

see description of module

Literature:

see associated lecture

Assigned Courses:

Materials Chemistry (Tutorial) (exercise course)

Examination

Materials Chemistry

written exam / length of examination: 90 minutes

Examination Prerequisites:

Materials Chemistry

Module PHM-0117: Surfaces a	nd Interfaces	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Pro	. Dr. Siegfried Horn	
Contents: Introduction		
 The importance of surfaces and 	nd interfaces	
Some basic facts from solid state pl	hysics	
 Crystal lattice and reciprocal I Electronic structure of solids Lattice dynamics 	attice	
Physics at surfaces and interfaces		
 Structure of ideal and real sur Relaxation and reconstruction Transport (diffusion, electronic Thermodynamics of interfaces Electronic structure of surfaces Chemical reactions on solid s Interface dominated materials 	n c) on interfaces s rs tate surfaces (catalysis)	
Methods to study chemical composition	tion and electronic structure, application	examples
 Scanning electron microscopy Scanning tunneling and scanning Auger – electron – spectroscopy Photo electron spectroscopy 	ning force microscopy	
Learning Outcomes / Competenc The students:	es:	
surfaces and interfaces,acquire the skill to solve probl interface physics,	ems of fundamental research and applied e certain problems autonomously based of	
Workload: Total: 180 h 60 h lecture and exercise course (a 20 h studying of course content usir 20 h studying of course content usir 80 h studying of course content thro	ng provided materials (self-study)	
Conditions: The module "Physics IV - Solid Stat Materials Science program should b	e Physics" of the Bachelor of Physics / be completed first.	
Frequency: each winter semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module
Part of the Module: Surfaces and Interfaces Mode of Instruction: lecture Language: English Frequency: annually Contact Hours: 3
Learning Outcome: see module description
Contents: see module description
 Literature: Ertl, Küppers: Low Energy Electrons and Surface Chemistry (VCH) Lüth: Surfaces and Interfaces of Solids (Springer) Zangwill: Physics at Surfaces (Cambridge) Feldmann, Mayer: Fundamentals of Surface and thin Film Analysis (North Holland) Henzler, Göpel: Oberflächenphysik des Festkörpers (Teubner) Briggs, Seah: Practical Surface Analysis I und II (Wiley)
Assigned Courses: Surfaces and Interfaces (lecture)
Part of the Module: Surfaces and Interfaces (Tutorial) Mode of Instruction: exercise course Language: English Frequency: annually Contact Hours: 1
Assigned Courses:
Surfaces and Interfaces (lecture)
Surfaces and Interfaces (Tutorial) (exercise course)

Examination

Surfaces and Interfaces

written exam / length of examination: 90 minutes

Examination Prerequisites:

Surfaces and Interfaces

Module PHM-0053: Chemica	al Physics I	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: I	Prof. Dr. Wolfgang Scherer	
Contents:		
Basics of quantum chemic		
Molecular symmetry and g		
The electronical structure		
Learning Outcomes / Compete	ences:	
The students:		
	ended-Hückel-method and the density functi	onal theory,
 know the basics of group t 	-	
 are able to apply the know spectroscopy, and 	ledge gained through consideration of symn	hetry from vibration-, NMR-, and UV/VIS-
	edict the basical geometric, electronical and	magnetical properties of transition metal
complexes.		
	soft skills: ability to specialize in a scientific	opic and to apply the acquired knowledge
for solving scientific proble		
Remarks:		
It is possible for students to do E	HM calculations autonomously and analyze	electronical structures of molecules on a
computer cluster within the scop	e of the tutorial.	
Workload:		
Total: 180 h		
	using provided materials (self-study)	
20 h studying of course content		
	through exercises / case studies (self-study)	
60 h lecture and exercise course		
Conditions:		
· ·	he experiments FP11 (IR-spectroscopy)	
and FP17 (Raman-spectroscopy Fortgeschrittenenpraktikum".) of the module Physikalisches	
	Recommended Semester:	Minimal Duration of the Module:
Frequency: each winter semester	from 1.	1 semester[s]
Contact Hours:		
4	Repeat Exams Permitted: according to the examination	
4	regulations of the study program	
Parts of the Module		
Part of the Module: Chemical F	Physics I	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		
see module description		

Contents:

- · Basics of quantum chemical methods
 - Extended Hueckel method (EHM)
 - · Modern quantum chemical methods of chemical physics
 - Application: exemplary calculations and interpretation of simple electronical structures
- Molecular symmetry and group theory
 - Symmetry operations and matrix transformations
 - Point groups
 - Reducible and irreducible representations
 - Character tables
 - Application: infrared- and raman-spectroscopy, NMR-spectroscopy
- · The electronical structure of transition metal complexes
 - Ligand field theory and angular-overlap model (AOM)
 - The physical basics of the spectrochemical series
 - Molecular orbital theory of transition metal complexes
 - Application: UV/VIS-spectroscopy, molecular magnetism

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- D. C. Harris und M. D. Bertolucci, Symmetry and Spectroscopy (Dover Publications)
- D. M. Bishop, Group Theory and Chemistry (Dover Publications)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Assigned Courses:

Chemical Physics I (lecture)

Part of the Module: Chemical Physics I (Tutorial)

Mode of Instruction: exercise course

Language: English Contact Hours: 1

.

Assigned Courses:

Chemical Physics I (Tutorial) (exercise course)

Examination

Chemical Physics I

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics I

Module PHM-0171: Method Co	ourse: Coordination Materials	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		
Person responsible for module: Pro	h. Dr. Dirk Volkmer	
Contents:		
diffraction)	metal complexes (thermal analysis, UV/	vis spectroscopy, cyclic voltammetry, X-ray on storage materials)
Learning Outcomes / Competend The students will learn how to:	es:	
synthesis conditions (Schleni • characterize coordination cor	c technique), npounds by selected analytical technique on materials based on organic / inorganic atalytic reactions,	
Remarks: ELECTIVE COMPULSORY MODU	LE	
Total: 240 h 120 h lecture and exercise course (20 h studying of course content usi 80 h studying of course content thro 20 h studying of course content usi	ng literarture (self-study) bugh exercises / case studies (self-study)
Conditions:		Credit Requirements:
none		written report (protocols)
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Cour Mode of Instruction: laboratory co Language: English Contact Hours: 4	se: Coordination Materials (Practical Course	Course)
Part of the Module: Method Cour Mode of Instruction: seminar Language: English Contact Hours: 2	se: Coordination Materials (Seminar)	
Literature: Chemical databases Primary literature 		

Examination Method Course: Coordination Materials (Seminar) seminar Examination Prerequisites: Method Course: Coordination Materials (Seminar)

Module PHM-0147: Method	Course: Electron Microscopy	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		·
Person responsible for module:	Prof. Dr. Ferdinand Haider	
Contents:		
1. Scanning electron microsc	copy (SEM)	
2. Transmission electron mic	roscopy (TEM)	
Learning Outcomes / Compete	ences:	
The students:		
	etical basics, which are afterwards deepene aterials using different electron microscopy to blem.	
Remarks: ELECTIVE COMPULSORY MO	DULE	
Workload:		
Total: 240 h		
	t using provided materials (self-study)	
90 h lecture and exercise course	(attendance)	
Conditions:		Credit Requirements:
Recommended: knowledge of so	blid-state physics, reciprocal lattice	written report (one report per group)
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	
Parts of the Module		

Part of the Module: Method Course: Electron Microscopy

Mode of Instruction: lecture Language: English

Contact Hours: 2

Contents:

SEM:

- 1. Layout of Electron Microscopes and Electron Optical Components
- 2. Electron Solid Interactions
- 3. Contrast Formation in Scanning Electron Microscopy (SEM)
- 4. SE/BSE contrast
- 5. Electron Back Scattering Diffraction (EBSD)
- 6. Analytical techniques
- 7. Special Applications of SEM

TEM:

- 1. TEM specimen preparation techniques
- 2. Components of a TEM, principle lens design, lens aberrations
- 3. Electron diffraction: fundamentals
- 4. Contrast formation at bright field, dark field, weak beam dark field, and many beam conditions, "chemical" imaging
- 5. Bright field, dark field, weak beam dark field imaging of dislocations
- 6. Kinematical theory of electron wave propagation in crystals
- 7. Howie Whelan equations, contrast of defects
- 8. High resolution TEM, lattice imaging of crystals
- 9. Advanced diffraction techniques: Kikuchi patterns, HOLZ lines and Convergent Beam Diffraction (CBED)
- 10. Image simulation
- 11. Analytical TEM: Electron energy loss spectroscopy & energy filtered TEM

Literature:

- D.B.Williams and C.B.Carter, Transmission Electron Microscopy, Plenum Press, New York/London, 1996
- M.A. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron microscopy of thin crystals, Krieger Publishing Company, Malabar (Florida), 1977
- L. Reimer, Transmission electron microscopy, Springer Verlag, Berlin/Heidelberg/New York, 1984
- P.J. Goodhew, Thin foil preparation for electron microscopy, Elsevier, Amsterdam, 1985
- P.R. Buseck, J.M. Cowley, L. Eyring, High-resolution transmission electron microscopy, Oxford University Press, 1988
- E. Hornbogen, B. Skrotzki, Werkstoff-Mikroskopie, Springer Verlag, Berlin/Heidelberg/New York, 1995
- K. Wetzig, In situ scanning electron microscopy in materials research, Akad.-Verl., 1995
- J. I. goldstein, Scanning electron microscopy and x-ray microanalysis, Plenum Press, 1992
- L. Reimer, Scanning electron microscopy, Springer Verlag, 1985
- S. L. Flegler, J. W. Heckman, K. L. Klomparens, Elektronenmikroskopie, Spektrum, Akad. Verl., 1995

Part of the Module: Method Course: Electron Microscopy (Practical Course)

Mode of Instruction: laboratory course **Language:** English

Contact Hours: 4

Examination

Method Course: Electron Microscopy Examination Prerequisites: Method Course: Electron Microscopy

and Materials Scientists	Course: Electronics for Physicists	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		
Person responsible for module:	Andreas Hörner	
Contents:		
1. Basics in electronic and el	lectrical engineering [4]	
2. Quadrupole theory [2]		
3. Analog technique, transist	or and opamp circuits [5]	
4. Boolean algebra and logic		
5. Digital electronics and cal		
6. Microprocessors and Netv	vorks [4]	
 7. Basics in Electronic [8] 8. Implementation of transist 	ors [8]	
9. Operational amplifiers [8]		
10. Digital electronics [8]		
11. Practical circuit arrangeme	ent [8]	
Learning Outcomes / Compete The students:	ences:	
 have expertise in independent Remarks: ELECTIVE COMPULSORY MO Attendance in the Method Cour AND lecture) excludes credit po Workload: Total: 240 h 	rse: Electronics for Physicists and Materia bints for the lecture Electronics for Physicis	calculate and develop easy circuits.
	t using provided materials (self-study)	
100 h lecture and exercise cours	se (attendance)	
Conditions:		Credit Requirements:
none		written report (one per group)
F requency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
Conduct Hours:		
Contact Hours: 7	according to the examination	
	according to the examination regulations of the study program	

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in lecture)

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (lecture)

Part of the Module: Method Course: Electronics for Physicists and Materials Scientists (Practical Course) Mode of Instruction: laboratory course Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Electronics for Physicists and Materials Scientists (Practical Course) (internship)

Examination

Method Course: Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Method Course: Electronics for Physicists and Materials Scientists

Module PHM-0172: Method Cou Materials	rse: Functional Silicate-analogous	ECTS Credits:
Version 1.0.0 (since SoSe15) Person responsible for module: Prof.	Dr. Henning Höppe	
Contents: Synthesis and characterization of fund	ctional materials according to the topics:	
 Silicate-analogous compounds Luminescent materials / phosph Pigments Characterization methods: XRD 	ors , spectroscopy (luminescence, UV/vis, F	T-IR), thermal analysis
Learning Outcomes / Competences		
 apply classical and modern prepation autoclave reactions, use of silic 	oheres (e.g. reducing, inert conditions), es from single-crystal data,	ion, sol-gel reaction, precipitation,
Remarks: ELECTIVE COPULSORY MODULE		-
Workload: Total: 240 h 120 h lecture and exercise course (att 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study)	
Conditions: Recommended: attendance to the lec	ture "Advanced Solid State Materials"	Credit Requirements: written report (protocol)
Frequency: each semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		1

Part of the Module: Method Course: Functional Silicate-analogous Materials (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 6

Learning Outcome:

The students will know how to:

- · develop functional materials based on silicate-analogous materials,
- apply classical and modern preparation techniques (e.g. solid state reaction, sol-gel reaction, precipitation, autoclave reactions, use of silica ampoules),
- work under non-ambient atmospheres (e.g. reducing, inert conditions),
- · solve and refine crystal structures from single-crystal data,
- describe and classify these structures properly.

Contents:

Synthesis and characterization of functional materials according to the topics:

- 1. Silicate-analogous compounds
- 2. Luminescent materials / phosphors
- 3. Pigments
- 4. Characterization methods: XRD, spectroscopy (luminescence, UV/vis, FT-IR), thermal analysis

Assigned Courses:

Method Course: Functional Silicate-analogous Materials (Practical Course) (internship)

Examination

Method Course: Functional Silicate-analogous Materials

seminar

Examination Prerequisites:

Method Course: Functional Silicate-analogous Materials

Module PHM-0148: Meth	od Course: Optical Properties of Solids	ECTS Credits: 8
Version 1.0.0 (since SoSe15		
Person responsible for modu	le: Prof. Dr. Joachim Deisenhofer	
Contents:		
Electrodynamics of solids		
Maxwell equationsElectromagnetic waves	、 、	
Refraction and interfere		
FTIR spectroscopy		
Fourier transformation		
Michelson-Morley and	Genzel interferometer	
 Sources and detectors 		
Terahertz Time Domain spec	troscopy	
Generation of pulsed T		
Gated detection, Austir		
Elementary excitations in sol		
Rotational-vibrational b		
 Infrared-active phonon: Interband excitations 	5	
 Crystal-field excitations 	3	
Learning Outcomes / Comp The students:	petences:	
	principles of far-infrared spectroscop and terahe	utz timo domain spoetroscopy
	al physical excitations in condensed matter that	
	out complex experiments,	· · · · · · · · · · · · · · · · · · ·
learn how to evaluate a	and analyze optical data.	
Remarks:		
Workload:		
Total: 240 h		
90 h lecture and exercise cou		
	ent using provided materials (self-study) ent using literarture (self-study)	
	ent through exercises / case studies (self-study))
Conditions:		Credit Requirements:
Recommended: basic knowle	edge in solid-state physics, basic knowledge in	written report
electrodynamics and optics		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
Contact Hours: ଚ	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: Optical Properties of Solids

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

Mark Fox, Optical Properties of Solids, Oxford Master Series

Assigned Courses:

Method Course: Optical Properties of Solids (lecture)

Part of the Module: Method Course: Optical Properties of Solids (Practical Course)

Mode of Instruction: laboratory course

Language: English Contact Hours: 4

Assigned Courses:

Method Course: Optical Properties of Solids (Practical Course) (internship)

Examination

Method Course: Optical Properties of Solids Examination Prerequisites: Method Course: Optical Properties of Solids

Module PHM-0149: Method Co	urse: Methods in Biophysics	ECTS Credits:
Version 1.0.0 (since SoSe15) Person responsible for module: Dr.		
Contents:		
Unit radiation biophysics		
 Concepts in radiation protection Low-dose irradiation biophysic DNA repair dynamics of living Confocal scanning laser micro 	cs cells after ionizing radiation	
Unit microfluidic		
Microfluidic systemsAccoustic driven microfluidicsCalculation of microfluidic pro	blems	
Unit analysis		
Learning Outcomes / Competenc The students:	es:	
technologies of microfluidic arlearn skills in tissue culture arlearn skills in fluorescence an	d immun-histochemical staining procedu d confocal scanning microscopy, problems on small length scales,	
Remarks: ELECTIVE COMPULSORY MODU	LE	
The course will partly take place at	he Helmholtz Center Munich.	
Workload: Total: 240 h		
Conditions: Attendance of the lecture "Biophysic	s and Biomaterials"	Credit Requirements: 1 written lab report
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Cours Mode of Instruction: lecture Language: English Contact Hours: 2	se: Methods in Biophysics	

Part of the Module: Method Course: Methods in Biophysics (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Literature:

- T. Herrmann, Klinische Strahlenbiologie kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1
- J. Freyschmidt, Handbuch diagnostische Radiologie Strahlenphysik, Strah-lenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3
- S. Haeberle und R. Zengerle, Microfluidic platforms for lab-on-a-chip applica-tions, Lab-on-a-chip, 2007, 7, 1094-1110
- J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9
- Lecture notes

Examination

Method Course: Methods in Biophysics Examination Prerequisites: Method Course: Methods in Biophysics

Module PHM-0150: Method Co Matter	ourse: Spectroscopy on Condensed	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		
Person responsible for module: Dr.	Stephan Krohns	
Contents:		
Dielectric Spectroscopy [8]		
MethodsCryo-techniques		
 Measurement quantities 		
 Relaxation processes 		
Dielectric phenomena		
Ferroelectric Materials [7]		
Mechanism of ferroelectric po	larization	
 Hysteresis loop measuremen 	ts	
Dielectric spectroscopy		
Glassy Matter [8]		
Introduction		
Glassy phenomenaDielectric spectroscopy		
Multiferroic Materials [7]		
IntroductionMicroscopic origins of multiferent	roicity	
 Pyrocurrent measurements 	TOTOTY	
Dielectric spectroscopy		
Learning Outcomes / Competenc	es:	
The students:		
are instructed in experimentaare trained in planning and pedata,are taught to work on problem	s of dielectric spectroscopy and the pheno methods for the investigation of the dielect erforming complex experiments. They learn hs in experimental solid state physics, inclu framework of models and theories.	ctric properties of condensed matter, n to evaluate and analyze the collected
Remarks: ELECTIVE COMPULSORY MODU	LE	
Workload:		
Total: 240 h		
Conditions:		Credit Requirements:
_	solid state physics, basic knowledge in	written report on the experiments
physics of glasses and supercoolec	liquids	(editing time 2 weeks)
Frequency:	Recommended Semester:	Minimal Duration of the Module:
irregular (usu. winter semester)	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
6	according to the examination	
	regulations of the study program	

Part of the Module: Method Course: Spectroscopy on Condensed Matter

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- N.W. Ashcroft, N.D. Mermin, Festkörperphysik (Oldenbourg)
- Ch. Kittel, Einführung in die Festkörperphysik (Oldenbourg)
- C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization (Elsevier)
- J. R. Macdonald, Impedance Spectroscopy (Wiley)
- H. Scholze, Glas (Springer)
- S.R. Elliott, Physics of Amorphous Materials (Longman)
- R. Zallen, The Physics of Amorphous Solids (Wiley)

Part of the Module: Method Course: Spectroscopy on Condensed Matter (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Examination

Method Course: Spectroscopy on Condensed Matter

written exam / length of examination: 120 minutes

Examination Prerequisites:

Method Course: Spectroscopy on Condensed Matter

Module PHM-0151: Method C and Characterization	Course: Porous Materials - Synthesis	ECTS Credits: 8
Version 1.0.0 (since SoSe15)		
Person responsible for module: P	of. Dr. Dirk Volkmer	
Contents:		
Synthesis of porous functional ma	terials (e.g. Metal-Organic Frameworks, zeol	ites)
Characterization methods		
 Thermal analysis (TGA, EG Structure determination (XR Absorption and diffusion (BI Catalytic properties (UV/VIS Computational Modeling (catalytic) 	D, VTXRPD) T, pulse chemisorption)	ures)
Learning Outcomes / Competer	ces:	
use modern solid state prepemploy analytical methods of	aration techniques (e.g. microwave synthesis dedicated to porous materials.	3),
Remarks: ELECTIVE COMPULSORY MOD	ULE	
further information upon request		
Workload:		-
Total: 240 h		
120 h lecture and exercise course	(attendance)	
20 h studying of course content us		
	sing provided materials (self-study)	
80 h studying of course content th	rough exercises / case studies (self-study)	
Conditions: Recommended: lecture Functiona	l Porous Materials	Credit Requirements: written report (editing time 1 week)
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: Porous Materials Synthesis and Characterization (Practical Course) Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Porous Materials Synthesis and Characterization (Practical Course) (internship)

Examination

Method Course: Porous Materials Synthesis and Characterization

written exam / length of examination: 45 minutes

Examination Prerequisites:

Method Course: Porous Materials Synthesis and Characterization

Module PHM-0157: Method Techniques	Course: X-ray and Neutron Diffraction	ECTS Credits: 8
Version 1.0.0 (since SoSe15) Person responsible for module:	Prof. Dr. Wolfgang Scherer	
Contents: Subjects of the practical training of X-ray and neutron diffraction	and the accompanying lecture are the theore economic and the accompanying lecture are the theore	tical basics and the practical application
Basic introduction to X-ray and r	neutron crystallography	
X-ray/neutron scattering		
Data collection and reduction te	chniques	
Symmetry and space group dete	ermination	
Structural refinements:		
The Rietveld methodDifference Fourier synthes	sis	
Structure determination:		
Patterson methodDirect methods		
Interpretation of structural refine	ment results	
Electronic structure determination	on and analysis	
Learning Outcomes / Compete The students:	ences:	
employing X-ray and neut • have the skill to, under gu	edge on structural characterization methods for ron diffraction techniques, idance, perform phase-analyses and structure the structure-property relationships of new ma	determinations,
Remarks: ELECTIVE COMPULSORY MO	DULE	
30 h studying of course content	through exercises / case studies (self-study)	
Conditions: none		
Frequency: each winter semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Method Course: X-ray and Neutron Diffraction Techniques

Mode of Instruction: lecture

Language: English

Contact Hours: 2

Literature:

- C. Hammond, The Basis of Crystallography and Diffraction, Oxford University Press Inc., New York, 2001.
- W. Clegg, A. J. Blake, R. O. Gould, P. Main, Crystal Structure Analysis, Prin-ciple and Practice, Oxford University Press Inc., New York, 2001.
- G. Giacovazzo, Fundamentals of Crystallography, Oxford University Press Inc., New York, 1994.
- R. A. Young, The Rietveld Method, Oxford University Press Inc., New York, 2002.
- W. Massa, Crystal Structure Determination, Springer, Berlin, 2004.

Assigned Courses:

Method Course: X-ray and Neutron Diffraction Techniques (lecture)

Part of the Module: Method Course: X-ray and Neutron Diffraction Techniques (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: X-ray and Neutron Diffraction Techniques (Practical Course) (internship)

Examination

Method Course: X-ray and Neutron Diffraction Techniques

written exam / length of examination: 90 minutes

Examination Prerequisites:

Method Course: X-ray and Neutron Diffraction Techniques

multiphysics phenomena	Course: Finite element modeling of	ECTS Credits: 8
Version 1.0.0 (since SoSe15) Person responsible for module: P	rivDoz. Dr. Markus Sause	
Contents: Modeling and simulation of Basic concepts of FEM prog Generation of meshes Optimization strategies Selection of solvers Examples from electrodyna Examples from thermodyna Examples from continuum r Examples from fluid dynam	mics Imics nechanics	
 Students acquire abilities to 	nces: numerical procedures to model and simulate build numerical models based on real work ional principles of FEM tools based on the p	I challenges
	al lecturers and lecturers from the mathema physicists and engineers who intend to strer EM programs.	
dedicated to materials scientists, simulation using state-of-the-art F Workload: Total: 240 h 120 h lecture and exercise course 80 h studying of course content th 20 h studying of course content u	physicists and engineers who intend to stren EM programs. (attendance) (attendance) (attendance) (self-study)	
dedicated to materials scientists, simulation using state-of-the-art F Workload: Total: 240 h 120 h lecture and exercise course 80 h studying of course content th 20 h studying of course content u	physicists and engineers who intend to stren EM programs. e (attendance) nrough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study)	
dedicated to materials scientists, simulation using state-of-the-art F Workload: Total: 240 h 120 h lecture and exercise course 80 h studying of course content th 20 h studying of course content u 20 h studying of course content u 20 h studying of course content u	physicists and engineers who intend to stren EM programs. e (attendance) nrough exercises / case studies (self-study) sing literarture (self-study) sing provided materials (self-study)	ngthen their background in numerical Credit Requirements: 1 written report on selected topic,

Part of the Module: Method Course: Finite element modeling of multiphysics phenomena

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Finite element modeling of multiphysics phenomena (lecture)

Part of the Module: Method Course: Finite element modeling of multiphysics phenomena (Tutorial) Mode of Instruction: exercise course

Language: English

Contact Hours: 3

Assigned Courses:

Method Course: Finite element modeling of multiphysics phenomena (Tutorial) (exercise course)

Examination

Method Course: Finite element modeling of multiphysics phenomena Examination Prerequisites:

Method Course: Finite element modeling of multiphysics phenomena

ing Materials	Course: Magnetic and Superconduc	ECTS Credits: 8
/ersion 1.0.0 (since SoSe15)		
Person responsible for module: F	Prof. Dr. Philipp Gegenwart	
Contents: Methods of growth and character	ization:	
Sample preparation (bulk materia	als and thin films), e.g.,	
arcmeltingflux-growthsputtering and evaporation		
Sample characterization, e.g.,		
 X-ray diffraction electron microscopy, scanr magnetic susceptibility, ele specific heat 	c c i	
Learning Outcomes / Compete	nces:	
 learn to evaluate and analy 	performing complex experiments rze the collected data, are taught to work of of measurement results and their interpre-	
Workload:		
Total: 240 h		
	ising provided materials (self-study)	
80 h studying of course content t	ising literarture (self-study) hrough exercises / case studies (self-study	4
00 h lecture and exercise course	•	y)
Conditions: Recommended: basic knowledge in solid state physics and quantum mechanics		Credit Requirements: presentation and written report on the experiments (editing time 3 weeks, max. 30 pages)
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		

Language: English

Contact Hours: 2

Part of the Module: Method Course: Magnetic and Superconducting Materials (Practical Course)

Mode of Instruction: laboratory course Language: English Contact Hours: 4

Examination

Method Course: Magnetic and Superconducting Materials

Examination Prerequisites:

Method Course: Magnetic and Superconducting Materials

Module PHM-0154: Method Cou Spectroscopy	rse: Modern Solid State NMR	ECTS Credits: 8
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. I	Dr. Leo van Wüllen	,
Contents: Physical foundations of NMR spectros	сору [6]	
Internal interactions in NMR spectroso	сору [6]	
Chemical shift interactionDipole interaction andQuadrupolar interaction		
Magic Angle Spinning techniques [4]		
Modern applications of NMR in materi	als science [14]	
Experimental work at the Solid-State I [60]	NMR spectrometers, computer-aided ar	alysis and interpretation of acquired data
Learning Outcomes / Competences The students:	:	
gain basic practical knowledge	rsical foundations of modern Solid-State of operating a solid-state NMR spectron erform, and analyze modern solid-state aterials.	neter,
Remarks: ELECTIVE COMPULSORY MODULE	1	
Workload: Total: 240 h 90 h studying of course content throug 30 h studying of course content using 30 h studying of course content using 90 h lecture and exercise course (atte	provided materials (self-study)	
Conditions: none		
Frequency: each semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Method Course Mode of Instruction: lecture	Modern Solid State NMR Spectrosc	ру

Language: English

Contact Hours: 2

Literature:

- M. H. Levitt, spin Dynamics, John Wiley and Sons, Ltd., 2008.
- H. Günther NMR spectroscopy, Wiley, 2001.
- M. Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- D. Canet, NMR concepts and methods, Springer, 1994.

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (lecture)

Part of the Module: Method Course: Modern Solid State NMR Spectroscopy (Practical Course)

Mode of Instruction: laboratory course

Language: English

Contact Hours: 4

Assigned Courses:

Method Course: Modern Solid State NMR Spectroscopy (Practical Course) (internship)

Examination

Method Course: Modern Solid State NMR Spectroscopy

written exam / length of examination: 90 minutes

Examination Prerequisites:

Method Course: Modern Solid State NMR Spectroscopy

Module PHM-0206: Metho under Pressure	d Course: Infrared Microspectroscopy	ECTS Credits: 8
Version 1.0.0 (since WS16/17) Person responsible for module	: Prof. Dr. Christine Kuntscher	
Contents: Electrodynamics of solids		
Maxwell equations and electron	magnetic waves in matter	
Optical variables		
Theories for dielectric function:		
i. Free carriers in metals and se	emiconductors (Drude)	
ii. Interband absorptions in seniii. Vibrational absorptionsiv. Multilayer systems	niconductors and insulators	
FTIR microspectroscopy		
Components of FTIR spectrom i. Light sources ii. Interferometers iii. Detectors	eters	
Microscope components High pressure experiments Eq	uipments	
Pressure calibration		
Experimental techniques under i. IR spectroscopy ii. Raman scattering iii. Magnetic measurements iv. Transport measurements	r high pressure	
Learning Outcomes / Compe The students	tences:	
Learn about the basics of the li	ght interaction with various materials and the f	undamentals of FTIR microspectroscopy,
Are introduced to the high pres	sure equipments used in infrared spectroscopy	ý,
Learn to carry out infrared micr	ospectroscopy experiments under pressure,	
Learn to analyze the measured	l optical spectra.	
Workload: Total: 240 h		
Conditions: none		Credit Requirements: Written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 6	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure

Mode of Instruction: lecture

Language: German

Contact Hours: 2

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (lecture)

Part of the Module: Method Course: Infrared Microspectroscopy under Pressure (Practical Course)

Mode of Instruction: laboratory course

Language: German

Contact Hours: 4

Assigned Courses:

Method Course: Infrared Microspectroscopy under Pressure (Practical Course) (internship)

Examination

Method Course: Infrared Microspectroscopy under Pressure

Version 1.0.0 (since WS16/17) Person responsible for module: Dr. Robert Horny	Prof. Dr. Ferdinand Haider	,
Contents:		
Methods of thermal analysis: Differential Scanning Calorime Thermo-gravimetric Analysis: T Dilatometry: DIL Dynamic-mechanical Analysis: Advanced Methods: Modulated Differential Scannin Evolved Gas Analysis: EGA G0	DMA g Calorimetry: MDSC	
Learning Outcomes / Compete		
The students:		
processes (metals, polymelearn to plan and carry outlearn how to evaluate and	complex experiments and the usage of ad	
Remarks:		
30 h studying of course content 30 h lecture and exercise course		у)
Conditions: Recommended: basic knowledg	e in solid-state physics	Credit Requirements: written report
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: ଚ	Repeat Exams Permitted: according to the examination regulations of the study program	

Mode of Instruction: lecture Lecturers: Prof. Dr. Ferdinand Haider Language: English Contact Hours: 2 Assigned Courses: Method Course: Thermal Analysis (lecture) Part of the Module: Method Course: Thermal Analysis (Practical Course)

Mode of Instruction: laboratory course

Language: English Contact Hours: 4

Assigned Courses:

Method Course: Thermal Analysis (Practical Course) (internship)

Examination

Method Course: Thermal Analysis

Module PHM-0158: Intro	duction to Materials (= Seminar)	ECTS Credits: 4
Version 1.0.0 (since SoSe15) Person responsible for modu	e: Prof. Dr. Ferdinand Haider	,
Contents: Varying topics for each year, modern materials.	giving an overview into scope, application, req	uirements and preparation of all types of
Learning Outcomes / Comp The students:	etences:	
	es, applications and processes of modern mate e to compile knowledge for examples of materia e to an audience.	
Remarks: COMPULSORY MODULE		
Workload: Total: 120 h		
Conditions: Recommended: basic knowle	dge in materials science	Credit Requirements: presentation with term paper (30 - 45 minutes)
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 2	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Introdu Mode of Instruction: semina	ction to Materials (Seminar) r	
Language: English Contact Hours: 2		
Contact Hours: 2 Literature:	be gathered by the students	
Contact Hours: 2 Literature:	be gathered by the students	

Introduction to Materials Examination Prerequisites: Introduction to Materials

Module PHM-0159: Laborat	tory Project	ECTS Credits: 10
Version 1.0.0 (since SoSe15)		
Person responsible for module:	Prof. Dr. Dirk Volkmer	
Contents: Experimental or theoretical work 3 months.	k in a laboratory / research group in the Instit	tute of Physics. Has to be conducted withir
Learning Outcomes / Compet The students:	ences:	
research groups,experience the day to day	Is and concepts to pursuit a real research pr r life in a research group from within, nduct a research project during their Masters	
Remarks: COMPULSORY MODULE		
Workload: Total: 300 h		
Conditions: Recommended: solid knowledg Materials Science, both experim	e in (solid state) Physics, Chemistry and nentally and theoretically	Credit Requirements: 1 written report (editing time 2 weeks)
Frequency: each semester	Recommended Semester: from 3.	Minimal Duration of the Module: 0 semester[s]
Contact Hours: 8	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Laborator Mode of Instruction: internship Language: English Contact Hours: 8 Literature:		
Various		
Examination Laboratory Project		

project work

Examination Prerequisites:

Laboratory Project

Module PHM-0051: Biophys	sics and Biomaterials	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module:	Dr. Stefan Thalhammer	
Contents:		
 Radiation Biophysics 		
 Microfluidics 		
 Membranes 		
Membranal transport		
Learning Outcomes / Compete	ences:	
The students:		
	ts and phenomena of biological physics,	
	olymer-theory, microfluidic, radiation biophys	sics, nanobiotechnology, membranes and
neuronal networks,		
• •	ident processing of problems and deal with o	urrent literature. They will be able to
•	servation into a physical question.	ist literature in explicit, explicitly of
•	soft skills: autonomous working with special	
thinking and working.	capacity for teamwork, ability to document ex	perimental results, and interdisciplinary
Workload:		
Total: 180 h		
60 h lecture and exercise course	using provided materials (self-study)	
	through exercises / case studies (self-study)	
20 h studying of course content		
Conditions:	Noticipal Dhusica, basis knowledge in	
-	tatistical Physics, basic knowledge in	
Molecular Biology	ľ	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
Λ	according to the examination	
4		
+ 	regulations of the study program	
	regulations of the study program	
Parts of the Module		
Parts of the Module Part of the Module: Biophysic		
4 Parts of the Module Part of the Module: Biophysic Mode of Instruction: lecture Language: English		
Parts of the Module Part of the Module: Biophysic Mode of Instruction: lecture		
Parts of the Module Part of the Module: Biophysic Mode of Instruction: lecture Language: English		

Contents:
Radiation Biophysics
 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics
 Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes
 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
 Literature: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes
Assigned Courses:
Biophysics and Biomaterials (lecture)
Part of the Module: Biophysics and Biomaterials (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1
Assigned Courses:
Biophysics and Biomaterials (Tutorial) (exercise course)
Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

Module PHM-0160: Dielectric and	l Optical Materials	ECTS Credits: 6
Version 1.1.0 (since SoSe15) Person responsible for module: Prof. D	r. Joachim Deisenhofer	
Contents: Optical materials:		
absorption) • Anisotropic media, linear optics		
Dielectric materials:		
 Ferroelectric materials: application sensors) Multiferroic materials: mechanism Supercapacitors: fundamentals of 	es: mechanism of polarization, piezoelet on of ferroelectric and relaxor-ferroelectri ns, materials, applications (e.g. sensors, of capacitance (e.g. Helmholtz- Gouy-, C als for supercapacitors (e.g. ionic liquids)	c materials (e.g. capacitors, actuators, integrated circuits) hapman-, Stern-Layers), pseudo- and
spectrum of dielectric and optical pheno competence to select materials for diffe	ctromagnetic wave propagation and hav omena. They are able to analyze materia	-
Remarks: Elective compulsory module		
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using li 80 h studying of course content through 20 h studying of course content using p	iterarture (self-study) n exercises / case studies (self-study)	
Conditions: Basic knowledge of solid state physics		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Dielectric and Op Mode of Instruction: lecture Language: English Contact Hours: 4	otical Materials	

Mark Fox, Optical Properties of Solids, Oxford Master Series

Examination

Dielectric and Optical Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Dielectric and Optical Materials

Module PHM-0059: Magnetism Version 1.0.0 (since WS09/10)	า	ECTS Credits: 6
Person responsible for module: Dr.	Hans-Albrecht Krug von Nidda	
Contents:	5	
 History, basics 		
-	and quantum phenomenology	
Exchange interaction and me		
 Magnetic anisotropy and mag 	-	
Thermodynamics of magnetic	systems and applications	
 Magnetic domains and domains 	in walls	
 Magnetization processes and 	micro magnetic treatment	
AC susceptibility and ESR		
Spintransport / spintronics		
Recent problems of magnetis	m	
Learning Outcomes / Competenc	es:	
The students:		
 know the basic properties and 	d phenomena of magnetic materials and t	ne most important methods and concepts
-	n-field theory, exchange interactions and r	-
	erent magnetic phenomena and to apply	he corresponding models for their
interpretation, and		
 nave the competence indeper Integrated acquirement of sof 	ndently to treat fundamental and typical to	pics and problems of magnetism.
integrated acquirement of sor		
Workload:		
Total: 180 h		
60 h lecture and exercise course (at	-	
20 h studying of course content usir		
80 h studying of course content thro	bugh exercises / case studies (self-study)	
20 h studying of source content usir	an provided motorials (calf study)	
20 h studying of course content usir	ng provided materials (self-study)	
Conditions:		
20 h studying of course content usir Conditions: basics of solid-state physics and qu		
Conditions: basics of solid-state physics and qu Frequency:	antum mechanics Recommended Semester:	Minimal Duration of the Module:
Conditions: basics of solid-state physics and qu Frequency:	antum mechanics	Minimal Duration of the Module: 1 semester[s]
Conditions: basics of solid-state physics and qu	antum mechanics Recommended Semester:	
Conditions: basics of solid-state physics and qu Frequency: annually	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted:	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours: 4	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours: 4 Parts of the Module	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours:	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
Conditions: basics of solid-state physics and qu Frequency: annually Contact Hours: 4 Parts of the Module Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3	Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	

see module description

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and Devices	I Technology of Semiconductor	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof.	Dr. Hubert J. Krenner	
Contents: 1. Basic properties of semiconduc 2. Semiconductor diodes and tran 3. Semiconductor technology 4. Optoelectronics	etors (electronic bandstructure, doping, ca sistors	arrier excitations and carrier transport)
 excitations, and carrier transpo Application of developed concessemiconductors. Application of these concepts to such as diodes, transistors, and Knowledge of the technological Integrated acquisition of soft sk presentation techniques, capacethinking and working. Workload: Total: 180 h 20 h studying of course content using	and semiconductor physics such as elect rt. pts (effective mass, quasi-Fermi levels) to b describe and understand the operation d optically active elements (LEDs, detector ly relevant methods and tools in semicon ills: autonomous working with specialist li ity for teamwork, ability to document expe	o describe the basic properties of principles of semiconductor devices ors and lasers). ductor micro- and nanofabrication. terature in English, acquisition of
60 h lecture and exercise course (atte Conditions: recommended prerequisites: basic kr quantum mechanics.		
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Mode of Instruction: lecture Language: English Contact Hours: 3	echnology of Semiconductor Devices	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostruct	ures / Nanophysics	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof.	Dr. Hubert J. Krenner	
Contents:		
 Magnetotransport in low-diment Optical properties of quantum v Nanowires, Carbon Nanotubes Nanophotonics, photonic band 	wires and dots, low dimensional electron isional systems, Quanten-Hall-Effect, Quan wells and quantum dots and their application c, Graphene gap materials, photonic crystals uantum Computing and Quantum Information	ntized conductance on in modern optoelectonic devices
Learning Outcomes / Competence	s:	
 Profound knowledge of low-din novel functional devices for hig Knowledge of different fabricat Application of these concepts t Integrated acquirement of soft 	nental concepts in modern nanoscale scier nensional semiconductor structures and ho h-frequency electronics and optoelectronic ion approaches using bottom-up and top-d o tackle present problems in nanophysics skills: autonomous working with specialist city for teamwork, ability to document expe	ow these systems can be applied for cs own techniques literature in English, acquisition of
Workload:		
Total: 180 h		
20 h studying of course content using	g provided materials (self-study)	
	ugh exercises / case studies (self-study)	
20 h studying of course content using		
60 h lecture and exercise course (att		1
Conditions: recommended prerequisites: basic ki quantum mechanics.	nowledge in solid-state physics and	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 2.	1 semester[s]
each winter semester	from 2.	
each winter semester Contact Hours:	from 2. Repeat Exams Permitted:	
each winter semester Contact Hours:	from 2. Repeat Exams Permitted: according to the examination	
each winter semester Contact Hours: 4	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Nanostructure Mode of Instruction: lecture	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Nanostructure Mode of Instruction: lecture Language: English	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Nanostructure Mode of Instruction: lecture	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Nanostructure Mode of Instruction: lecture Language: English Frequency: each summer semester	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Nanostructure Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4 Learning Outcome:	from 2. Repeat Exams Permitted: according to the examination regulations of the study program	

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)
- V. V. Mitin et al.: Introduction to Nanoelectronics (Cambridge University Press)
- Yariv: Quantum Electronics (Wiley)
- Yariv und Yeh: Photonics (Oxford University Press)

Assigned Courses:

Nanostructures / Nanophysics (lecture)

Examination

Nanostructures / Nanophysics oral exam / length of examination: 30 minutes Examination Prerequisites: Nanostructures / Nanophysics

Module PHM-0054: Chemical F	Physics II	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof	. Dr. Wolfgang Scherer	
Contents:		
 Charge density distribution fro 	m experiment and theory	
 Analysis of topology of spin- a 		
The nature of chemical bondin	-	
Analysis of wave functions wit		
Modern quantum chemical me		
Learning Outcomes / Competence The students:	9S:	
	nical methods of chemical physics to interp	pret electronical structures in molecules
and solid-state bodies,	why amongst other things the guantum the	erv of stores in meloculos (OTAINA) and
• •	pply amongst other things the quantum the on functions (such as ELF) to analyze cha	
	itonomously simple quantum chemical cal	
-	he electronical structure of functional mole	
chemical and physical propert		
 Integrated acquirement of soft 	skills: ability to specialize in a scientific to	pic and to apply the acquired knowledge
for solving scientific problems.		
Remarks:		
It is possible for students to do quan	tum chemical calculations autonomously a	and analyze electronical structures of
molecules on a computer cluster wit	hin the scope of the tutorial.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (at	tendance)	
20 h studying of course content usin		
20 h studying of course content usin		
	ugh exercises / case studies (self-study)	1
Conditions:		
It is highly recommended to complet	e the module Chemical Physics I first.	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Phys	sics II	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Contact Hours. 5		
Learning Outcome:		

Contents:

- · Charge density distribution from experiment and theory
- Analysis of topology of spin- and charge density distribution
- The nature of chemical bondings
- · Analysis of wave functions with localized orbitals
- · Modern quantum chemical methods: configuration interaction

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press)
- P. Popelier, Atoms in Molecules: An Introduction(Pearson Education Limited)
- F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

Module PHM-0161: Coordina	ation Materials	ECTS Credits: 6
Version 1.0.0 (since SoSe15)		
Person responsible for module: F	Prof. Dr. Dirk Volkmer	
Contents:		
A)		
Historical development of c		
 Structures and nomenclatu Chamical bands in transition 	re rules [2] on metal coordination compounds [3]	
Stability of transition metal		
Characteristic reactions [4]		
B) Selected classes of functional	materials	
Bioinorganic chemistry [2]		
 Coordination compounds in 		
Coordination polymers / me	etal-organic frameworks [4]	
Cluster compounds [2]		
Learning Outcomes / Compete The students	nces:	
coordination compounds,learn how to transfer conceIntegrated acquirement of s	o interpret UV/vis absorption spectra and to	
Remarks: ELECTIVE COMPULSORY MOI	DULE	
Workload:		
Total: 180 h		
	using provided materials (self-study)	
20 h studying of course content u 80 h studying of course content t	hrough exercises / case studies (self-study)	
60 h lecture and exercise course		
Conditions:		
	se is based on the courses "Chemistry I",	
"Chemistry II"		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
Λ	according to the examination	
4	regulations of the study are reserved	
	regulations of the study program	

Mode of Instruction: lecture Language: English Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Coordination Materials written exam / length of examination: 90 minutes

Examination Prerequisites: Coordination Materials

Module PHM-0113: Advance	ed Solid State Materials	ECTS Credits: 6
Version 1.0.0 (since WS10/11)		
Person responsible for module:	Prof. Dr. Henning Hoppe	
Contents:		
 Repitition of concepts 		
Novel silicate-analogous r	naterials	
Luminescent materials		
Pigments		
Heterogeneous catalysis		
Learning Outcomes / Competer		
	f correlations between composition, structur	
	e properties of chemical compounds, based	-
	ate the potential of functional materials for f	uture technological developments, and
	the properties of these materials.	
 Integrated acquirement of 		
Workload:		
Total: 180 h		
	using provided materials (self-study)	
	through exercises / case studies (self-study)
20 h studying of course content		
60 h lecture and exercise course	(attendance)	
Conditions:		
	e I, and Chemie II or Festkörperchemie	
(Bachelor Physik, Bachelor Mate	erialwissenschaften)	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		I.
Part of the Module: Advanced	Collid State Materials	
Mode of Instruction: lecture	Solid State Materials	
Language: English		
Contact Hours: 4		
Learning Outcome:		
see module description		
Contents:		
see module description		
Literature:		
 A. West, Solid State C 	hemistry and Its Applications	
 L. Smart, E. Moore, So 	olid State Chemistry	
 Scripts Solid State Ch 	emistry and Chemistry I and II	

Scripts Solid State Chemistry and Chemistry I and II

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0162: Solid State N Methods	MR Spectroscopy and Diffraction	ECTS Credits:
Version 1.0.0 (since SoSe15)		
Person responsible for module: Prof. D	or. Georg Eickerling	
Contents: Physical foundations of NMR spectros	CODV	
Internal Interactions in solid state NMR		
Magic Angle Spinning NMR		
Basic Introduction to X-ray and neutror	diffraction and crystallography	
K-ray/neutron scattering		
Data collection and reduction technique	es	
Symmetry and space group determination		
Structure determination and refinemen		
 The Patterson method Direct methods Rietveld refinements Difference Fourier techniques Charge density determination/an Remarks: ELECTIVE COMPULSORY MODULE	alysis	
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using p 30 h studying of course content throug 20 h studying of course content using l	provided materials (self-study) h exercises / case studies (self-study)	
Conditions: none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Solid State NMR Mode of Instruction: lecture Language: English	Spectroscopy and Diffraction Method	ds

Contact Hours: 3

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.
- 5. C. Hammond, The Basis of Crystallography and Diffraction, Oxford University Press Inc., New York, 2001.
- 6. W. Clegg, A. J. Blake, R. O. Gould, P. Main, Crystal Structure Analysis, Principle and Practice, Oxford University Press Inc., New York, 2001.
- 7. G. Giacovazzo, Fundamentals of Crystallography, Oxford University Press Inc., New York, 1994.
- 8. R. A. Young, The Rietveld Method, Oxford University Press Inc., New York, 2002.
- 9. W. Massa, Crystal Structure Determination, Springer, Berlin, 2004.

Part of the Module: Solid State NMR Spectroscopy and Diffraction Methods (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Solid State NMR Spectroscopy and Diffraction Methods

written exam / length of examination: 90 minutes

Examination Prerequisites:

Solid State NMR Spectroscopy and Diffraction Methods

Module PHM-0114: Porous F	unctional Materials	ECTS Credits: 6
Version 1.0.0 (since SS11)		
Person responsible for module: Pr	of. Dr. Dirk Volkmer	
Contents:		
Overview and historical deve	elopments	
 Structural families of porous 	-	
 Structure Determination and 		
 Synthesis strategies 		
Adsorption and diffusion		
Thermal analysis methods		
 Catalytic properties 		
 Advanced applications and of 	current trends	
Learning Outcomes / Competen	Ces:	
 The students shall acquire k 	nowledge about design principles and sy	nthesis of porous functional materials,
 broaden their capabilities to 	characterize porous solid state materials	with special emphasis laid upon sorption
and thermal analysis,		
	al technical applications of porous solids	S.
 Integrated acquirement of so 	oft skills	
Remarks:		
Subsequent to the lecture course,	the students can take part in a hands-on	method course
``Porous Materials Synthesis and	Characterization" to practice their knowle	edge.
Workload:		
Total: 180 h		
20 h studying of course content us	ing literarture (self-study)	
20 h studying of course content us	ing provided materials (self-study)	
80 h studying of course content the	rough exercises / case studies (self-study	/)
60 h lecture and exercise course (attendance)	
Conditions:		Credit Requirements:
participation in the course Material	s Chemistry	one written examination, 90 min
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
	l.	
Parts of the Module		
Part of the Module: Porous Fund	ctional Materials	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Contents:		
see module description		
Literature:		
	ous Framework Solids (RSC Materials M	onographs, 2008)
	ous Framework Solids (RSC Materials M rnal articles cited on the slides	onographs, 2008)
Paul A. Wright, Micropor		onographs, 2008)
 Paul A. Wright, Micropor selected reviews and jour 	rnal articles cited on the slides	onographs, 2008)

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

Module PHM-0167: Oxidation and Corrosion	ECTS Credits: 6
Version 1.0.0 (since SoSe15)	· ·
Person responsible for module: Prof. Dr. Ferdinand Haider	
Contents: Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
Learning Outcomes / Competences:	
The students:	
 know the fundamental basics, mechanics, and types of corrosion pr obtain specific knowledge of one type of corrosion. 	ocesses,
Workload: Total: 180 h 120 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance)	
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry	Credit Requirements: practical course, written report

Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 3.	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

• Schütze: Corrosion and Environmental Degradation

Assigned Courses:

Oxidation and Corrosion (lecture)

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Oxidation and Corrosion written exam / length of examination: 90 minutes Examination Prerequisites: Oxidation and Corrosion

Module PHM-0164: Charac	terization of Composite Materials	ECTS Credits: 6
Version 1.0.0 (since SoSe15)		· ·
Person responsible for module:	PrivDoz. Dr. Markus Sause	
Contents:		
The following topics are presen	ted:	
 Introduction to composite 	materials	
 Applications of composite 	e materials	
 Mechanical testing 		
Thermophysical testing		
Nondestructive testing		
Learning Outcomes / Compe	tences:	
The students:		
 acquire knowledge in the 	field of materials testing and evaluation o	f composite materials.
 are introduced to importa 	nt concepts in measurement techniques, a	and material models applied to composites.
 are able to independently 	acquire further information of the scientifi	ic topic using various forms of information.
Workload:		
Total: 180 h		
60 h lecture and exercise cours		
	t through exercises / case studies (self-stu	idy)
	t using provided materials (self-study)	
20 h studying of course content	t using literarture (self-study)	
Conditions:		
	ge in materials science, particularly in	
composite materials		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
	Repeat Exams Permitted:	
Contact Hours:		
Contact Hours: 4	according to the examination	

Parts of the Module

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- · Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Materials Properties	Reinforced Composites: Processing and	ECTS Credits:
Version 1.0.0 (since SoSe15) Person responsible for module Frau Dr. Judith Moosburger-Wi	-	
Contents: The following topics are treated	J:	
Physical and chemical pr	-	nic matrix materials
Learning Outcomes / Compe The students:	tences:	
materials.are introduced to physical	as of composite materials. Inction technologies of fibers, polymeric, and cera al and chemical properties of fibers, matrices, an a acquire further knowledge of the scientific topic	d fiber reinforced materials.
Remarks: ELECTIVE COMPULSORY M	ODULE	
	t using provided materials (self-study) t through exercises / case studies (self-study)	
Conditions:		
Recommended: basic knowled	ge in materials science, basic lectures in	
Recommended: basic knowled organic chemistry Frequency:	ge in materials science, basic lectures in Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Recommended: basic knowled organic chemistry Frequency: each winter semester Contact Hours: 4	Recommended Semester:	

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module PHM-0165: Introduction	o Mechanical Engineering	ECTS Credits:
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D	r. Siegfried Horn	
Dr Ing. Johannes Schilp		
Contents: The following topics are treated:		
 Statics and dynamics of objects Transmissions and mechanisms Tension, shear and bending mon Hydrostatics Hydrodynamics Strength of materials and solid m Instrumentation and measureme 	echanics nt	
Mechanical design (including kin Learning Outcomes / Competences:		
 Engineering applications Mechanical testing Instrumentation Mechanical design Workload: Total: 180 h		
Conditions:		
none		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Mechanical Engi	neering	

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Part of the Module: Mechanical Engineering (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Introduction to Mechanical Engineering

written exam / length of examination: 90 minutes

Examination Prerequisites:

Introduction to Mechanical Engineering

Module MRM-0052: Functio	nal Polymers	ECTS Credits:
Version 1.0.0 (since SoSe15)		
Person responsible for module: I	Prof. Dr. Klaus Ruhland	
Contents:		
 Introduction to polymer sci 	ence	
 Elastomers and elastoplas 	tic materials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
 Electrically conducting poly 	ymers	
 Ion-conducting polymers 		
 Magnetic polymers 		
 Photoresponsive polymers 		
-	er non-linear optical properties	
Polymeric catalysts		
Self-healing polymers		
 Polymers in bio sciences> 		
Learning Outcomes / Compete		
• •	ic materials can be designed and applied to	act in a smart manner on an external
mechanical, magnetic, electric, c	optical, thermal or chemical impact.	
Workload:		
Total: 180 h		
60 h lecture and exercise course	e (attendance)	
	using provided materials (self-study)	
20 h studying of course content		
80 h studying of course content	through exercises / case studies (self-study)	
Conditions:		
	PHM-0035 (Chemie I), PHM-0036 (Chemie II)
and MRM-0050 (Grundlagen dei	^r Polymerchemie und -physik)	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted:	
4	according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Functional	Polymers	
Mode of Instruction: lecture		
L anguage: English		
Contact Hours: 3		
Develope Market Providence	Delawaran (Terlerial)	
Part of the Module: Functional	Polymers (Tutorial)	

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0122: Non-De	structive Testing	ECTS Credits:
Version 1.0.0 (since WS14/15)		
Person responsible for module:	PrivDoz. Dr. Markus Sause	
Contents:		
 Introduction to nondestruc 	tive testing methods	
 Visual inspection 		
 Ultrasonic testing 		
Guided wave testing		
Acoustic emission analysis	3	
Thermography Dediagraphy		
Radiography Eddy current testing		
Eddy current testingSpecialized nondestructive	methods	
Learning Outcomes / Compete The students	ences:	
 acquire knowledge in the f 	ield of nondestructive evaluation of material	S,
 are introduced to important 	t concepts in nondestructive measurement	techniques,
 are able to independently 	acquire further knowledge of the scientific to	ppic using various forms of information.
 Integrated acquirement of 	soft skills	
Workload:		
Total: 180 h		
60 h lecture and exercise course	e (attendance)	
20 h studying of course content	using provided materials (self-study)	
20 h studying of course content	using literarture (self-study)	
80 h studying of course content	through exercises / case studies (self-study)	
Conditions:		
Basic knowledge on materials so	cience, in particular composite materials	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Non-Destr	uctive Testing	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		
see module description		
Contents:		

Contents:

see module description

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- · Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Non-Destructive Testing (lecture)

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0168: Modern Met	allic Materials	ECTS Credits: 6
Version 1.0.0 (since SoSe15)		·
Person responsible for module: Prof.	Dr. Ferdinand Haider	
Contents: Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, hy 	rdroforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
 Learning Outcomes / Competence Students learn about all kinds of actual r basic concepts 	s: netallic alloys, their properties and how th	nese properties can be derived from
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throu 20 h studying of course content using 60 h lecture and exercise course (att	igh exercises / case studies (self-study) g provided materials (self-study)	
Conditions:		
	cal metallurgy and physical chemistry	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

Examination

Modern Metallic Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces ar	nd Interfaces II: Joining processes	ECTS Credits: 6
Version 1.1.0 (since WS15/16)		
Person responsible for module: Prof.	-	
Dozenten: Prof. Dr. Siegfried Horn, I	-	
Learning Outcomes / Competence The students	s:	
	thesion	
Workload: Total: 180 h		
Conditions:		Credit Requirements:
Basic knowledge on materials science	e, lecture "Surfaces and Interfaces I"	Bestehen der Modulprüfung
Module Surfaces and Interfaces (PH	M-0117) - recommended	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: any	
Parts of the Module		
Part of the Module: Surfaces and I Mode of Instruction: lecture Lecturers: Prof. Dr. Siegfried Horn Language: German Contact Hours: 3	nterfaces II: Joining processes	
Contents:		
The following topics are treated: - Introduction to adhesion		
- Role of surface and interface pr		
- Introduction to interactions at su	Irfaces and interfaces	
 Adhesion theories Surface and interface energy 		
- Surface treatment techniques		
- Joining techniques		
- Physical and chemical propertie	es of joints	
- Applications		
Literature: Literature, including actual scient	ific papers and reviews, will be announced	d at the beginning of the lecture.
Examination		
Surfaces and Interfaces II: Joining	-	
written exam / length of examinat	ion: 90 minutes	
Examination Prerequisites:		
Surfaces and Interfaces II: Joinin	a processos	

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course

Language: German Contact Hours: 1

Module PHM-0166: Carbon-base als)	d functional Materials (Carboteri-	ECTS Credits: 6
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. [Dr. Dirk Volkmer	
Contents: 1. Introduction to carbon allotropes and	d porous carbon materials [4]	
2. Physical properties of fullerenes, ca	rbon nanotubes and graphene [4]	
3. Solid state NMR spectroscopy of ca	rbon materials [4]	
4. Metal carbides [4]		
5. Carbon thin films and coatings [4]		
6. Manufacturing and processing techr	nology of carbon fibres [4]	
7. Carbon-fibre reinforced polymer cor	nposites [4]	
8. Carbon-fibre reinforced aluminium (Metal Matrix Composites, MMC) [4]	
9. Energy storage in carbon materials	[4]	
10. Carbon-based materials for opto-e	lectronics [4]	
11. Quantum transport phenomena rel	ating to carbon materials [4]	
12. a) Manipulating heat flow with carb	oon-based electronic analogs: phononics	in place of electronics [2]
12. b) Carbon-based spintronics [2]		
13. Fabrication and processing of carb	on-based nanostructures [4]	
Learning Outcomes / Competences: The students:		
-		
Workload: Total: 180 h 60 h lecture and exercise course (atter 20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug	provided materials (self-study)	
Conditions: none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Carbon-based functional Materials (Carboterials)

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

will be announced by the lecturers

Examination

Carbon-based functional Materials (Carboterials)

written exam / length of examination: 120 minutes

Examination Prerequisites:

Carbon-based functional Materials (Carboterials)

Module PHM-0174: Theoretic	al Concepts and Simulation	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Pr	of. Dr. Liviu Chioncel	
 Basic numerical methods: in Ordinary and Partial Differer Molecular dynamics 	ems, programming languages, data visualiza iterpolation, integration ntial Equations (e.g., diffusion equation, Sch	
5. Monte Carlo simulations		
Learning Outcomes / Competen	ces:	
The students:		
 relevant in material science, are able to solve simple prol have the expertise to find the validity of the numerical results Integrated acquirement of sciences 	blems numerically. They are able to write th e numerical method appropriate for the give ults, oft skills: independent handling of hard- and vestigate abstract circumstances with the h	e codes and to present the results, on problem and to judge the quality and software while using English
Remarks:		
Links to software related to the co	urse:	
 http://www.bloodshed.net/ http://www.cplusplus.com/do http://www.cygwin.com/ http://xmd.sourceforge.net/do http://www.rasmol.org/ http://felt.sourceforge.net/ 		
Workload:		
Total: 180 h 80 h studying of course content th 20 h studying of course content us	sing provided materials (self-study)	
Conditions: Recommended: basic knowledge and numerical methods as well as	of quantum mechanics, thermodynamics, of a programming language	Credit Requirements: project work in small groups, including a written summary of the results (ca. 10-20 pages) as well as an oral presentation
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted: according to the examination	

Part of the Module: Theoretical Concepts and Simulation

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Tao Pang, An Introduction to Computational Physics (Cambridge University Press)
- J. M. Thijssen, Computational Physics (Cambridge University Press)
- Koonin, Meredith, Computational Physics (Addison-Weseley)
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge University Press)
- W. H. Press et al, Numerical Recipes (Cambridge University Press)

Part of the Module: Theoretical Concepts and Simulation (Project)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Theoretical Concepts and Simulation

seminar / length of examination: 30 minutes

Examination Prerequisites:

Theoretical Concepts and Simulation

Module PHM-0058: Organic Se	emiconductors	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Pro	f. Dr. Wolfgang Brütting	
Contents: Basic concepts and applications of	organic semiconductors	
Introduction		
Materials and preparationStructural properties		
Electronic structure		
 Optical and electrical properti 	es	
Devices and Applications		
Organic metals		
 Light-emitting diodes 		
 Field-effect transistors 		
 Solar cells and laser 		
Learning Outcomes / Competenc	es:	
The students:		
 know the basic structural and 	electronic properties of organic semicondu	uctors as well as the essential function o
organic semiconductor device	es,	
	assification of the materials taking into acco	ount their specific features in the
functioning of components,		
	comprehend and attend to current problem	-
•	t skills: practicing technical English, workin	g with English specialist literature, abilit
to interpret experimental resu		
Workload:		
Total: 180 h 40 h studying of course content usi	a provided materials (self-study)	
40 h studying of course content usi		
	bugh exercises / case studies (self-study)	
60 h lecture and exercise course (a		
Conditions:		
It is strongly recommended to comp	lete the module solid-state physics first. In	
addition, knowledge of molecular pl	hysics is desired.	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
every 3rd semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Organic Semi	conductors	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Learning Outcome:		
see module description		

Contents:

see module description

Literature:

- M. Schwoerer, H. Ch. Wolf: Organic Molecular Solids (Wiley-VCH)
- W. Brütting (editor): Physics of Organic Semiconductors (Wiley-VCH)
- A. Köhler, H. Bässler: Electronic Processes in Organic Semiconductors (Wiley-VCH)

Part of the Module: Organic Semiconductors (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Organic Semiconductors

written exam / length of examination: 90 minutes

Examination Prerequisites:

Organic Semiconductors

Module PHM-0066: Supercond	uctivity	ECTS Credits: 6
Version 1.0.0 (since WS11/12)		
Person responsible for module: PD	Dr. Reinhard Tidecks	
 Phenomenological Thermody Ginzburg-Landau Theory Microscopic Theories Fundamental Experiments on Josephson-Effects High Temperature Superconductiv Learning Outcomes / Competence The students: will get an introduction to supe by a presentation of experime are informed about the most i Special attention will be drawn the superconducting state, to 	f the Superconducting State, an Overview namics and Electrodynamics of the SC the Nature of the Superconducting State uctors ity	al properties of the superconducting state, onductivity. meno-logical and microscopic theories of
Workload: Total: 180 h 60 h lecture and exercise course (at 80 h studying of course content thro 20 h studying of course content usir 20 h studying of course content usir	ugh exercises / case studies (self-study) g provided materials (self-study)	
Conditions: • Physik IV – Solid-state physic • Theoretical physics I-III	S	
Frequency: every 3rd semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Superconduc Mode of Instruction: lecture Language: English Contact Hours: 4	tivity	

Learning Outcome:

see module description

Contents:

see module description

- W. Buckel, Supraleitung, 5. Auflage (VCH, Weinheim, 1994)
- W. Buckel und R. Kleiner, Supraleitung, 6. Auflage (WILEY-VCH, Weinheim, 2004)
- M. Tinkham, Introduction to Superconductivity, 2nd Edition (McGraw-Hill, Inc., New York, 1996, Reprint by Dover Publications Inc. Miniola , 2004)
- Weitere Literatur wird in der Vorlesung angegeben

Examination

Superconductivity

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Superconductivity

	mperature Physics	ECTS Credits: 6
Version 1.0.0 (since WS09/10) Person responsible for module:	PD Dr. Reinhard Tidecks	
Contents:		
Introduction		
Thermodynamic fundame	ntals	
 Gas liquification 		
 Properties of liquid helium 	1	
Cryogenic engineering		
Learning Outcomes / Compet The students:	ences:	
 have acquired the theoret 	of matter at low temperatures and the correst tical knowledge to perform low-temperature n entally investigate current problems in low-te	neasurements,
80 h studying of course content 20 h studying of course content	through exercises / case studies (self-study)	
80 h studying of course content 20 h studying of course content 20 h studying of course content Conditions:	through exercises / case studies (self-study) using literarture (self-study)	
80 h studying of course content 20 h studying of course content 20 h studying of course content Conditions: Physik IV - Solid-state physics Frequency:	through exercises / case studies (self-study) using literarture (self-study)	Minimal Duration of the Module: 1 semester[s]
20 h studying of course content	through exercises / case studies (self-study) using literarture (self-study) using provided materials (self-study) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	
80 h studying of course content 20 h studying of course content 20 h studying of course content Conditions: Physik IV - Solid-state physics Frequency: every 3rd semester Contact Hours:	through exercises / case studies (self-study) using literarture (self-study) using provided materials (self-study) Recommended Semester: from 2. Repeat Exams Permitted:	
80 h studying of course content 20 h studying of course content 20 h studying of course content Conditions: Physik IV - Solid-state physics Frequency: every 3rd semester Contact Hours: 4	through exercises / case studies (self-study) using literarture (self-study) using provided materials (self-study) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	
80 h studying of course content 20 h studying of course content 20 h studying of course content 20 h studying of course content Conditions: Physik IV - Solid-state physics Frequency: every 3rd semester Contact Hours: 4 Parts of the Module Part of the Module: Low Temp	through exercises / case studies (self-study) using literarture (self-study) using provided materials (self-study) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content 20 h studying of course content 20 h studying of course content 20 h studying of course content Conditions: Physik IV - Solid-state physics Frequency: every 3rd semester Contact Hours: 4 Parts of the Module Part of the Module: Low Temp Mode of Instruction: lecture	through exercises / case studies (self-study) using literarture (self-study) using provided materials (self-study) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content 20 h studying of course content 20 h studying of course content Conditions: Physik IV - Solid-state physics Frequency: every 3rd semester Contact Hours:	through exercises / case studies (self-study) using literarture (self-study) using provided materials (self-study) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	
80 h studying of course content 20 h studying of course content 20 h studying of course content 20 h studying of course content Conditions: Physik IV - Solid-state physics Frequency: every 3rd semester Contact Hours: 4 Parts of the Module Part of the Module Part of the Module: Low Temp Mode of Instruction: lecture Language: English	through exercises / case studies (self-study) using literarture (self-study) using provided materials (self-study) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	

Contents:

- Introduction
 - History, methods, realizations, and significance
- Thermodynamic fundamentals
 - Temperature, working cycles, real gases, Joul-Thomson-Effect
- · Gas liquification
 - Air, hydrogen, helium
 - Separation of Oxygen and nitrogen
 - Storage and transfer of liquefied gases, superinsulation
- · Properties of liquid helium
 - Production and thermodynamic properties of4He and3He
 - Phase diagrams (4He,3He)
 - Superfluidity of4He
 - Experiments, Two-Fluid-Model
 - Bose-Einstein-Condensation
 - Excitation spectrum, critical velocity
 - Rotating Helium
 - Normal and superfluid3He
 - -4He /3He-mixtures
- Cryogenic engineering
 - Bath-Cryostats (Helium-4, Helium-3),
 - -4He /3He-Dilution-Refrigerators
 - Pomeranchuck-Cooling
 - Adiabatic demagnetization
 - Primary and secondary thermometers

Literature:

- C. Enss, S. Hunklinger, Tieftemperaturphysik (Springer)
- F. Pobell, Matter and Methods at Low Temperatures (Springer)

Assigned Courses:

Low Temperature Physics (lecture)

Part of the Module: Low Temperature Physics (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Low Temperature Physics (Tutorial) (exercise course)

Examination

Low Temperature Physics

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Low Temperature Physics

	Functional Materials	ECTS Credits: 6
Version 1.0.0 (since SS11)		
Person responsible for module: F	Prof. Dr. Dirk Volkmer	
Contents:		
 Overview and historical dev 	velopments	
 Structural families of porou 	s frameworks	
 Structure Determination an 	d Computer Modelling	
 Synthesis strategies 		
 Adsorption and diffusion 		
 Thermal analysis methods 		
 Catalytic properties 		
 Advanced applications and 	I current trends	
Learning Outcomes / Compete	nces:	
 The students shall acquire 	knowledge about design principles and syr	nthesis of porous functional materials,
	o characterize porous solid state materials	with special emphasis laid upon sorption
and thermal analysis,		
	bical technical applications of porous solids.	
 Integrated acquirement of s 	soft skills	
Remarks:		
Subsequent to the lecture course	e, the students can take part in a hands-on	method course
``Porous Materials Synthesis and	d Characterization" to practice their knowled	dge.
Workload:		
Total: 180 h		
20 h studying of course content u	using literarture (self-study)	
00 h atual da f f		
20 n studying of course content u	using provided materials (self-study)	
	using provided materials (self-study) hrough exercises / case studies (self-study))
80 h studying of course content t	hrough exercises / case studies (self-study)
80 h studying of course content t	hrough exercises / case studies (self-study	Credit Requirements:
80 h studying of course content the 60 h lecture and exercise course Conditions:	hrough exercises / case studies (self-study) (attendance)	1
80 h studying of course content the 60 h lecture and exercise course Conditions: participation in the course Materia	hrough exercises / case studies (self-study) (attendance)	Credit Requirements:
80 h studying of course content the 60 h lecture and exercise course Conditions: participation in the course Materia Frequency:	hrough exercises / case studies (self-study) (attendance) als Chemistry	Credit Requirements: one written examination, 90 min
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1.	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content the 60 h lecture and exercise course Conditions: participation in the course Materiate Frequency: each winter semester Contact Hours:	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted:	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content the 60 h lecture and exercise course Conditions: participation in the course Materiate Frequency: each winter semester Contact Hours:	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content the 60 h lecture and exercise course Conditions: participation in the course Materiate Frequency: each winter semester Contact Hours:	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted:	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content the 60 h lecture and exercise course Conditions: participation in the course Materia Frequency:	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur Mode of Instruction: lecture	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English Contact Hours: 4	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English Contact Hours: 4 Contents:	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English Contact Hours: 4 Contact Hours: 4 Contents: see module description	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module:
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English Contact Hours: 4 Contents: see module description Literature:	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module: 1 semester[s]
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English Contact Hours: 4 Contents: see module description Literature: • Paul A. Wright, Micropole	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module: 1 semester[s]
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English Contact Hours: 4 Contact Hours: 4 Contents: see module description Literature: • Paul A. Wright, Micropole • selected reviews and jo	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module: 1 semester[s]
80 h studying of course content th 60 h lecture and exercise course Conditions: participation in the course Materia Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Porous Fur Mode of Instruction: lecture Language: English Contact Hours: 4 Contents: see module description Literature: • Paul A. Wright, Micropole	hrough exercises / case studies (self-study) (attendance) als Chemistry Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	Credit Requirements: one written examination, 90 min Minimal Duration of the Module: 1 semester[s]

Examination

Porous Functional Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Porous Functional Materials

Module PHM-0050: Electron Scientists	ics for Physicists and Materials	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: A	ndreas Hörner	
Contents:		
1. Basics in electronic and ele	ctrical engineering	
2. Quadrupole theory		
 Analog technique, transisto Boolean algebra and logic 	r and opamp circuits	
 Digital electronics and calci 	ulation circuits	
 Microprocessors and Netwo 		
7. Basics in Electronic		
8. Implementation of transisto	rs	
9. Operational amplifiers		
10. Digital electronics		
Learning Outcomes / Competer The students:	nces:	
 have skills in easy circuit de have expertise in independ Integrated acquirement of s 	epts and phenomena of electronic and elected esign, measuring and control technology, and ent working on circuit problems. They can control technology and soft skills: autonomous working with special apacity for teamwork, ability to document ext	nalog and digital electronics, alculate and develop easy circuits. st literature in English, acquisition of
Conditions:		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each semester	from 3.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
	s , , , ,	
Parts of the Module		
	for Physicists and Materials Scientists	
Part of the Module: Electronics Mode of Instruction: lecture		L
Mode of Instruction: lecture Language: English		
Part of the Module: Electronics Mode of Instruction: lecture Language: English Contact Hours: 4		
Part of the Module: Electronics Mode of Instruction: lecture Language: English		

see module description

- Paul Horowitz: The Art of Electronics (Cambridge University Press)
- National Instruments: MultiSim software package (available in the lecture)

Assigned Courses:

Electronics for Physicists and Materials Scientists (lecture)

Examination

Electronics for Physicists and Materials Scientists

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Electronics for Physicists and Materials Scientists

Module PHM-0068: Spintronics		ECTS Credits:
Version 1.0.0 (since SoSe14)		
Person responsible for module: Dr. Ge	erman Hammerl	
Contents: Introduction into magnetism Basic spintronic effects and dev Novel materials for spintronic ap Spin-sensitive experimental met Semiconductor based spintronic	plications hods	
Learning Outcomes / Competences The students:	:	
 structures, have acquired skills in identifying and have the competence to despintronics largely autonomous. 	s of magnetic materials, the basic spintro g materials with respect to their applicab al with current problems in the field of se	ility for spintronic devices,
Workload: Total: 180 h 60 h lecture and exercise course (atte 80 h studying of course content throug 20 h studying of course content using 20 h studying of course content using	gh exercises / case studies (self-study) literarture (self-study)	
Conditions: none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Spintronics Mode of Instruction: lecture Language: English Contact Hours: 3		
Learning Outcome:		

see module description

Contents:

see module description

Literature:

- N. W. Ashcroft, N. D. Mermin, Solid State Physics, Cengage Learning (2011), ISBN: 81-315-0052-7
- C. Felser, G. H. Hechter, Spintronics From Materials to Devices, Springer (2013), ISBN: 978-90-481-3831-9
- S. Bandyopadhyay, M. Cahay, Introduction to Spintronics, CRC Press (2008), ISBN: 978-0-9493-3133-6

Part of the Module: Spintronics (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Spintronics written exam / length of examination: 90 minutes

Examination Prerequisites:

Spintronics

Module PHM-0057: Physics	of Thin Films	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: D	r. German Hammerl	
Contents:		
 Layer growth 		
Thin film technology		
Analysis of thin films		
Properties and applications		
Learning Outcomes / Competer	nces:	
The students:		
 have acquired skills of grou and applications, and have the competence to de 	echnology and material properties and app ping the various technologies for producing al with current problems in the field of thin oft skills: practicing technical English, work sults.	g thin layers with respect to their properties film technology largely autonomous.
Workload: Total: 180 h 80 h studving of course content th	rough exercises / case studies (self-study	
20 h studying of course content u)
	sing provided materials (self-study)	
60 h lecture and exercise course		
Conditions:		
none		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
every 3rd semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		·
Part of the Module: Physics of ⁻	Thin Films	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 4		
Contact Hours. 4		
Learning Outcome: see module description		

see module description

Literature:

- H. Frey, G. Kienel, Dünnschichttechnologie (VDI Verlag, 1987)
- H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer Verlag, 2001)
- A. Wagendristel, Y. Wang, An Introduction to Physics and Technology of Thin Films (World Scientific Publishing, 1994)
- M. Ohring, The Materials Science of Thin Films (Academic Press, 1992)

Examination

Physics of Thin Films written exam / length of examination: 90 minutes Examination Prerequisites:

Physics of Thin Films

Module PHM-0056: Ion-Solid Inte	eraction	ECTS Credits: 6
Version 1.0.0 (since WS09/10) Person responsible for module: apl. P	rof. Dr. Holmut Korl	
 Fundamentals of atomic collision collision models) Ion-induced modification of solid 	and technological application, principles) n processes (scattering, cross-sections, e ls (integrated circuit fabrication with empl ion milling and etching (RIE), sputtering,	nasis on ion induced phenomena, ion
Learning Outcomes / Competences The students:	:	
 have the competence to work exsolid state bodies. Integrated acquirement of soft s Workload: Total: 180 h	ysical models for specific technological a ktensively autonomous on problems conc kills.	
20 h studying of course content using 20 h studying of course content using 80 h studying of course content throug 60 h lecture and exercise course (atte	provided materials (self-study) gh exercises / case studies (self-study)	
Conditions: Basic Courses in Physics I–IV, Solid S	State Physics, Nuclear Physics	
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Ion-Solid Interact Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description	ction	
Contents: see module description		

- R. Smith, Atomic and ion collisions in solids and at surfaces (Cambridge University Press, 1997)
- E. Rimini, Ion implantation: Basics to device fabrication (Kluwer, 1995)
- W. Eckstein: Computer Simulation of Ion-Solid Interactions (Springer, 1991)
- H. Ryssel, I. Ruge: Ionenimplantation (Teubner, 1978)
- Y. H. Ohtsuki: Charged Beam Interaction with Solids (Taylor & Francis, 1983)
- J. F. Ziegler (Hrsg.): The Stopping and Range of Ions in Solids (Pergamon)
- R. Behrisch (Hrsg.): Sputtering by Particle Bombardment (Springer)
- M. Nastasi, J. K. Hirvonen, J. W. Mayer: Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, 1996)
- http://www.SRIM.org

Part of the Module: Ion-Solid Interaction (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Ion-Solid Interaction

written exam / length of examination: 90 minutes

Examination Prerequisites:

Ion-Solid Interaction

Version 1.0.0 (since WS14/15)	d Magnetic Materials and Methods	ECTS Credits: 6
Person responsible for module:	Prof. Dr. Manfred Albrecht	
Contents:		
 Basics of magnetism 		
Ferrimagnets, permanent	magnets	
Magnetic nanoparticles		
Superparamagnetism		
Exchange bias effect	ore	
 Magnetoresistance, sense Experimental methods (e) 	.g. Mößbauer Spectroscopy, mu-SR)	
· · · ·		
Learning Outcomes / Compet		
	asic terms and concepts of magnetism,	insting
•	ding of basic physical relations and their appl	
	ribe qualitative observations, interpret quant s of physical effects of chosen magnetic mate	-
	f soft skills: autonomous working with special	-
	capacity for teamwork, ability to document ex	
thinking and working.		
Workload:		
Total: 180 h		
	through exercises / case studies (self-study)	
	using provided materials (self-study)	
zo a siuavina or course content	using literarture (self-study)	
	using literarture (self-study) e (attendance)	
60 h lecture and exercise cours		
60 h lecture and exercise cours Conditions:		
60 h lecture and exercise cours Conditions: Basics in solid state physics	e (attendance)	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency:	e (attendance) Recommended Semester:	Minimal Duration of the Module:
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester	e (attendance) Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours:	e (attendance)	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours:	e (attendance)	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture Language: English	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied N Mode of Instruction: lecture Language: English Contact Hours: 3	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome:	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied N Mode of Instruction: lecture Language: English Contact Hours: 3	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description Contents: see module description	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description Contents:	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise cours Conditions: Basics in solid state physics Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Applied M Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description Contents: see module description Literature:	e (attendance) Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	

Part of the Module: Applied Magnetic Materials and Methods (Tutorial)

Mode of Instruction: exercise course

Language: English Contact Hours: 1

Assigned Courses:

Applied Magnetic Materials and Methods (Tutorial) (exercise course)

Examination

Applied Magnetic Materials and Methods

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Applied Magnetic Materials and Methods

Module PHM-0052: Solid State S Radiation and Neutrons	pectroscopy with Synchrotron	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. D	r. Christine Kuntscher	
 Excitations in the solid state: Die Infrared spectroscopy Ellipsometry Photoemission spectroscopy X-ray absorption spectroscopy Neutrons: Sources, detectors Neutron scattering Learning Outcomes / Competences: The students:	etic radiation: monochromators, spectro	
 have acquired the skills of formul the field of solid state spectrosco 	lating a mathematical-physical ansatz in py, h current problems in solid state spectro ods for application.	n spectroscopy and can apply these in
Workload: Total: 180 h 20 h studying of course content using p 20 h studying of course content using l 80 h studying of course content throug 60 h lecture and exercise course (atter	iterarture (self-study) h exercises / case studies (self-study)	
Conditions: basic knowledge in solid-state physics		
Frequency: annually	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Solid State Spec Mode of Instruction: lecture Language: English Contact Hours: 3	troscopy with Synchrotron Radiation	n and Neutrons
Learning Outcome: see module description		

Contents:

see module description

- H. Kuzmany, Solid State Spectroscopy (Springer)
- N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston)
- J. M. Hollas, Modern Spectroscopy

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (lecture)

Part of the Module: Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons (Tutorial) (exercise course)

Examination

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

oral exam / length of examination: 30 minutes

Examination Prerequisites:

Solid State Spectroscopy with Synchrotron Radiation and Neutrons

Module PHM-0051: Biophys	ics and Biomaterials	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: D	r. Stefan Thalhammer	
Contents:		
 Radiation Biophysics 		
Microfluidics		
Membranes		
Membranal transport		
Learning Outcomes / Competer	nces:	
The students:		
	and phenomena of biological physics,	
	lymer-theory, microfluidic, radiation biophys	ics, nanobiotechnology, membranes and
neuronal networks,	ant processing of problems and deal with a	urrent literature. They will be able to
	ent processing of problems and deal with c ervation into a physical question.	unent illerature. They will be able to
-	soft skills: autonomous working with special	st literature in english, acquisition of
	apacity for teamwork, ability to document ex	
thinking and working.		
Workload:		
Total: 180 h		
60 h lecture and exercise course	(attendance)	
	sing provided materials (self-study)	
	nrough exercises / case studies (self-study)	
20 h studying of course content u	sing literarture (self-study)	
Conditions:		
Mechanics, Thermodynamics, Sta	atistical Physics, basic knowledge in	
Molecular Biology		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Biophysics	and Biomaterials	
Mode of Instruction: lecture		
Language: English		
Contact Hours: 3		
Contact Hours: 3 Learning Outcome:		

Contents:
Radiation Biophysics
 Radiation sources Interaction of radiation with biological matter Radiation protection principles Low dose radiation LNT model in radiation biophysics Microfluidics
 Life at Low Reynolds Numbers The Navier-Stokes Equation Low Reynolds Numbers – The Stokes Equation Breaking the Symmetry Membranes
 Thermodynamics and Fluctuations Thermodynamics of Interfaces Phase Transitions – 2 state model Lipid membranes and biological membranes, membrane elasticity Membranal transport
 Random walk, friction and diffusion Transmembranal ionic transport and ion channels Electrophysiology of cells Neuronal Dynamics
 Literature: T. Herrmann, Klinische Strahlenbiologie – kurz und bündig, Elsevier Verlag, ISBN-13: 978-3-437-23960-1 J. Freyschmidt, Handbuch diagnostische Radiologie – Strahlenphysik, Strahlenbiologie, Strahlenschutz, Springer Verlag, ISBN: 3-540-41419-3 S. Haeberle, R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab-on-a-chip, 2007, 7, 1094-1110 J. Berthier, Microdrops and digital microfluidics, William Andrew Verlag, ISBN:978-0-8155-1544-9 lecture notes
Assigned Courses:
Biophysics and Biomaterials (lecture)
Part of the Module: Biophysics and Biomaterials (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 1
Assigned Courses:
Biophysics and Biomaterials (Tutorial) (exercise course)
Examination

Biophysics and Biomaterials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Biophysics and Biomaterials

Module PHM-0160: Dielectric and	Optical Materials	ECTS Credits: 6
Version 1.1.0 (since SoSe15) Person responsible for module: Prof. D	r. Joachim Deisenhofer	
Contents:		
Optical materials:		
absorption) • Anisotropic media, linear optics		
Dielectric materials:		
 Ferroelectric materials: applicatio sensors) Multiferroic materials: mechanism Supercapacitors: fundamentals or 	es: mechanism of polarization, piezoelet on of ferroelectric and relaxor-ferroelectri- ns, materials, applications (e.g. sensors, f capacitance (e.g. Helmholtz- Gouy-, Cl als for supercapacitors (e.g. ionic liquids)	c materials (e.g. capacitors, actuators, integrated circuits) napman-, Stern-Layers), pseudo- and
spectrum of dielectric and optical pheno competence to select materials for diffe Remarks:	ctromagnetic wave propagation and hav omena. They are able to analyze materia	-
Elective compulsory module		
Workload: Total: 180 h 60 h lecture and exercise course (atten 20 h studying of course content using li 80 h studying of course content through 20 h studying of course content using p	terarture (self-study) n exercises / case studies (self-study)	
Conditions:		
Basic knowledge of solid state physics		Minimal Demotion of the Market
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Dielectric and Op Mode of Instruction: lecture Language: English Contact Hours: 4	otical Materials	

Mark Fox, Optical Properties of Solids, Oxford Master Series

Examination

Dielectric and Optical Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Dielectric and Optical Materials

Module PHM-0059: Magnetism	ECTS Credits: 6
Version 1.0.0 (since WS09/10) Person responsible for module: Dr. Hans-Albrecht Krug von Nidd	la
Contents: • History, basics • Magnetic moments, classical and quantum phenomenology • Exchange interaction and mean-field theory • Magnetic anisotropy and magnetoelastic effects • Thermodynamics of magnetic systems and applications • Magnetic domains and domain walls • Magnetization processes and micro magnetic treatment • AC susceptibility and ESR • Spintransport / spintronics • Recent problems of magnetism	y
 Learning Outcomes / Competences: The students: know the basic properties and phenomena of magnetic mathematic for their description, like mean-field theory, exchange interaction, and have the ability to classify different magnetic phenomena at interpretation, and have the competence independently to treat fundamental at Integrated acquirement of soft skills. Workload: Total: 180 h 60 h lecture and exercise course (attendance) 20 h studying of course content using literarture (self-study)	actions and micro magnetic models, nd to apply the corresponding models for their
80 h studying of course content through exercises / case studies 20 h studying of course content using provided materials (self-stu	
Conditions: basics of solid-state physics and quantum mechanics	
Frequency: Recommended Semest annually from 1.	er: Minimal Duration of the Module: 1 semester[s]
Contact Hours: Repeat Exams Permittee 4 according to the examination regulations of the study permittee	ation
Parts of the Module	
Part of the Module: Magnetism Mode of Instruction: lecture Language: English Contact Hours: 3	
Learning Outcome: see module description	

Contents:

see module description

- D. H. Martin, Magnetism in Solids (London Iliffe Books Ltd.)
- J. B. Goodenough, Magnetism and the Chemical Bond (Wiley)
- P. A. Cox, Transition Metal Oxides (Oxford University Press)
- C. Kittel, Solid State Phyics (Wiley)
- D. C. Mattis, The Theory of Magnetism (Wiley)
- G. L. Squires, Thermal Neutron Scattering (Dover Publications Inc.)

Part of the Module: Magnetism (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Magnetism

written exam / length of examination: 90 minutes

Examination Prerequisites:

Magnetism

Module PHM-0048: Physics and Devices	Technology of Semiconductor	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. I	Dr. Hubert J. Krenner	
Contents: 1. Basic properties of semiconduct 2. Semiconductor diodes and trans 3. Semiconductor technology 4. Optoelectronics	ors (electronic bandstructure, doping, ca istors	rrier excitations and carrier transport)
 excitations, and carrier transport Application of developed concept semiconductors. Application of these concepts to such as diodes, transistors, and Knowledge of the technologically Integrated acquisition of soft skill 	nd semiconductor physics such as electric ts (effective mass, quasi-Fermi levels) to describe and understand the operation p optically active elements (LEDs, detectory relevant methods and tools in semicond ls: autonomous working with specialist lift by for teamwork, ability to document expen- provided materials (self-study) literarture (self-study)	o describe the basic properties of principles of semiconductor devices rs and lasers). ductor micro- and nanofabrication. terature in English, acquisition of
60 h lecture and exercise course (atter	ndance)	
Conditions: recommended prerequisites: basic kno quantum mechanics.	owledge in solid state physics and	
Frequency: each winter semester	Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Physics and Teo Mode of Instruction: lecture Language: English Contact Hours: 3 Learning Outcome: see module description	chnology of Semiconductor Devices	
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors (Springer)
- Sze: Physics of Semiconductor Devices (Wiley)
- Sze: Semiconductor Devices (Wiley)
- Madelung: Halbleiterphysik (Springer)
- Singh: Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)

Part of the Module: Physics and Technology of Semiconductor Devices (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Contents:

see module description

Examination

Physics and Technology of Semiconductor Devices

written exam / length of examination: 90 minutes

Examination Prerequisites:

Physics and Technology of Semiconductor Devices

Module PHM-0049: Nanostructu	res / Nanophysics	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Prof. [Dr. Hubert J. Krenner	
 Magnetotransport in low-dimens Optical properties of quantum w Nanowires, Carbon Nanotubes, Nanophotonics, photonic band g 		ntized conductance on in modern optoelectonic devices
 Profound knowledge of low-dimension novel functional devices for high Knowledge of different fabrication Application of these concepts to Integrated acquirement of soft soft soft soft soft soft soft	: ental concepts in modern nanoscale scient ensional semiconductor structures and he -frequency electronics and optoelectronic in approaches using bottom-up and top-o- tackle present problems in nanophysics kills: autonomous working with specialist ty for teamwork, ability to document expe	ow these systems can be applied for cs down techniques literature in English, acquisition of
Workload: Total: 180 h 20 h studying of course content using 80 h studying of course content throug 20 h studying of course content using 60 h lecture and exercise course (atten Conditions: recommended prerequisites: basic know quantum mechanics.	h exercises / case studies (self-study) literarture (self-study) ndance)	
Frequency: each winter semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Nanostructures Mode of Instruction: lecture Language: English Frequency: each summer semester Contact Hours: 4	/ Nanophysics	
Learning Outcome: see module description		
Contents: see module description		

- Yu und Cardona: Fundamentals of Semiconductors
- Singh:Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press)
- Davies: The Physics of low-dimensional Semiconductors (Cambridge University Press)
- V. V. Mitin et al.: Introduction to Nanoelectronics (Cambridge University Press)
- Yariv: Quantum Electronics (Wiley)
- Yariv und Yeh: Photonics (Oxford University Press)

Assigned Courses:

Nanostructures / Nanophysics (lecture)

Examination

Nanostructures / Nanophysics oral exam / length of examination: 30 minutes Examination Prerequisites: Nanostructures / Nanophysics

Module PHM-0054: Chemical	Physics II	ECTS Credits: 6
Version 1.0.0 (since WS09/10)		
Person responsible for module: Pro	of. Dr. Wolfgang Scherer	
Contents:		
Charge density distribution fr	om experiment and theory	
Analysis of topology of spin-	and charge density distribution	
 The nature of chemical bond 	ings	
 Analysis of wave functions w 		
Modern quantum chemical m	nethods: configuration interaction	
Learning Outcomes / Competend	ces:	
The students:		
	mical methods of chemical physics to inter	oret electronical structures in molecules
and solid-state bodies,		
-	apply amongst other things the quantum the	
	tion functions (such as ELF) to analyze cha autonomously simple quantum chemical ca	
•	the electronical structure of functional mole	c i
chemical and physical prope		secties and materials with regard to
	ft skills: ability to specialize in a scientific to	nic and to apply the acquired knowledge
for solving scientific problems		
Remarks:		
	ntum chemical calculations autonomously	and analyze electronical structures of
molecules on a computer cluster w	ithin the scope of the tutorial.	
Workload:		
Total: 180 h		
60 h lecture and exercise course (a	attendance)	
20 h studying of course content usi		
20 h studying of course content usi		
	ough exercises / case studies (self-study)	1
Conditions:		
It is highly recommended to comple	ete the module Chemical Physics I first.	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Chemical Ph	ysics II	
Mode of Instruction: lecture	-	
Language: English		
Contact Hours: 3		
Learning Outcome:		

Contents:

- · Charge density distribution from experiment and theory
- Analysis of topology of spin- and charge density distribution
- The nature of chemical bondings
- · Analysis of wave functions with localized orbitals
- · Modern quantum chemical methods: configuration interaction

Literature:

- J. Reinhold, Quantentheorie der Moleküle (Teubner)
- H.-H. Schmidtke, Quantenchemie (VCH)
- J. K. Burdett, Chemical Bonds: A Dialog (Wiley)
- F. A. Kettle, Physical Inorganic Chemistry (Oxford University Press)
- R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press)
- P. Popelier, Atoms in Molecules: An Introduction(Pearson Education Limited)
- F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press)
- A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburg, PA)

Part of the Module: Chemical Physics II (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Learning Outcome:

see module description

Examination

Chemical Physics II

written exam / length of examination: 90 minutes

Examination Prerequisites:

Chemical Physics II

Module PHM-0161: Coordina	ation Materials	ECTS Credits: 6
Version 1.0.0 (since SoSe15)		
Person responsible for module: F	rof. Dr. Dirk Volkmer	
Contents:		
A)		
Historical development of c		
 Structures and nomenclatu Chemical bonds in transition 	re rules [2] n metal coordination compounds [3]	
Stability of transition metal		
Characteristic reactions [4]		
B) Selected classes of functional	materials	
Bioinorganic chemistry [2]		
 Coordination compounds in 	medical applications [1]	
 Coordination polymers / me 	etal-organic frameworks [4]	
Cluster compounds [2]		
Learning Outcomes / Compete The students	nces:	
	out concepts of chemical bonding in coordi	nation chemistry (main emphasis: d-block
transition metal compounds		
 broaden their capabilities to coordination compounds, 	o interpret UV/vis absorption spectra and to	predict stability and reactivity of
	pts of coordination chemistry onto topics of	materials sciences
 Integrated acquirement of s 		
Remarks:		
ELECTIVE COMPULSORY MOD	DULE	
Workload:		
Total: 180 h		
20 h studying of course content u	sing provided materials (self-study)	
20 h studying of course content u		
	nrough exercises / case studies (self-study)	
60 h lecture and exercise course	(attendance)	
Conditions:		
	se is based on the courses "Chemistry I",	
"Chemistry II"		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		·

Mode of Instruction: lecture Language: English Contact Hours: 3

- Joan Ribas Gisbert, Coordination Chemistry, Wiley-VCH
- Lutz H. Gade, Koordinationschemie, Wiley-VCH
- · As well as selected reviews and journals articles cited on the slides

Part of the Module: Coordination Materials (Tutorial)

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Coordination Materials written exam / length of examination: 90 minutes

Examination Prerequisites: Coordination Materials

Module PHM-0113: Advance	1 Solid State Materials	ECTS Credits: 6
Version 1.0.0 (since WS10/11) Person responsible for module: Pr		
Contents: • Repitition of concepts • Novel silicate-analogous ma • Luminescent materials • Pigments • Heterogeneous catalysis	terials	
acquire skills to predict the pgain competence to evaluate	orrelations between composition, structure properties of chemical compounds, based of the potential of functional materials for fu e properties of these materials.	on their composition and structures,
Conditions: Contents of the modules Chemie I (Bachelor Physik, Bachelor Materi	, and Chemie II or Festkörperchemie alwissenschaften)	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Advanced S Mode of Instruction: lecture Language: English Contact Hours: 4 Learning Outcome: see module description	olid State Materials	
Contents: see module description		
Literature: • A. West, Solid State Che • L. Smart, E. Moore, Solid • Scripts Solid State Chen		

Examination

Advanced Solid State Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Advanced Solid State Materials

Module PHM-0162: Solid St Methods	ate NMR Spectroscopy and Diffractio	ECTS Credits
Version 1.0.0 (since SoSe15)		
Person responsible for module:	Prof. Dr. Georg Eickerling	
Contents: Physical foundations of NMR sp	ectroscopy	
Internal Interactions in solid stat	e NMR spectroscopy	
Magic Angle Spinning NMR		
Basic Introduction to X-ray and r	neutron diffraction and crystallography	
X-ray/neutron scattering		
Data collection and reduction te	chniques	
Symmetry and space group dete	ermination	
Structure determination and refin	nement	
 Direct methods Rietveld refinements Difference Fourier techniq Charge density determina 	ion/analysis	
ELECTIVE COMPULSORY MO Workload: Total: 180 h		
	using provided materials (self-study) through exercises / case studies (self-study)	
Conditions: none		
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module	·	
Part of the Module: Solid State Mode of Instruction: lecture Language: English	NMR Spectroscopy and Diffraction Meth	ods

Contact Hours: 3

- 1. M. H. Levitt, Spin Dynamics, John Wiley and Sons, Ltd., 2008.
- 2. H. Günther, NMR spectroscopy, Wiley 2001.
- 3. M.Duer, Introduction to Solid-State NMR spectroscopy, Blackwell Publishing Ltd., 2004.
- 4. D. Canet: NMR concepts and methods, Springer, 1994.
- 5. C. Hammond, The Basis of Crystallography and Diffraction, Oxford University Press Inc., New York, 2001.
- 6. W. Clegg, A. J. Blake, R. O. Gould, P. Main, Crystal Structure Analysis, Principle and Practice, Oxford University Press Inc., New York, 2001.
- 7. G. Giacovazzo, Fundamentals of Crystallography, Oxford University Press Inc., New York, 1994.
- 8. R. A. Young, The Rietveld Method, Oxford University Press Inc., New York, 2002.
- 9. W. Massa, Crystal Structure Determination, Springer, Berlin, 2004.

Part of the Module: Solid State NMR Spectroscopy and Diffraction Methods (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Solid State NMR Spectroscopy and Diffraction Methods

written exam / length of examination: 90 minutes

Examination Prerequisites:

Solid State NMR Spectroscopy and Diffraction Methods

Module PHM-0167: Oxidation and Corrosion	ECTS Credits: 6
Version 1.0.0 (since SoSe15)	
Person responsible for module: Prof. Dr. Ferdinand Haider	
Contents: Introduction	
Review of thermodynamics	
Chemical equilibria	
Electrochemistry	
Electrode kinetics	
High temperature oxidation	
Localized corrosion	
 Shallow pit corrosion Pitting corrosion Crevice corrosion Intercrystalline corrosion Stress corrosion cracking Fatigue corrosion Erosion corrosion Galvanic corrosion 	
Water and seawater corrosion	
Corrosion monitoring	
Corrosion properties of specific materials	
Specific corrosion problems in certain branches	
Oil and Gas industryAutomobile industryFood industry	
Corrosion protection	
 Passive layers Reaction layers (Diffusion layers) Coatings (organic, inorganic) Cathodic, anodic protection Inhibitors 	
Learning Outcomes / Competences:	
The students:	
 know the fundamental basics, mechanics, and types of corrosion pr obtain specific knowledge of one type of corrosion. 	ocesses,
Workload: Total: 180 h 120 h studying of course content using provided materials (self-study) 60 h lecture and exercise course (attendance)	
Conditions: Recommended: good knowledge in materials science, basic knowledge in physical chemistry	Credit Requirements: practical course, written report

Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 3.	1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Oxidation and Corrosion

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Schütze: Corrosion and Environmental Degradation

Assigned Courses:

Oxidation and Corrosion (lecture)

Part of the Module: Oxidation and Corrosion (Tutorial)

Mode of Instruction: exercise course Language: English

Contact Hours: 1

Examination

Oxidation and Corrosion written exam / length of examination: 90 minutes Examination Prerequisites: Oxidation and Corrosion

Module PHM-0164: Charac	cterization of Composite Materials	ECTS Credits: 6
Version 1.0.0 (since SoSe15)		· · ·
Person responsible for module:	PrivDoz. Dr. Markus Sause	
Contents:		
The following topics are presen	ited:	
 Introduction to composite 	materials	
 Applications of composite 	e materials	
 Mechanical testing 		
Thermophysical testing		
Nondestructive testing		
Learning Outcomes / Compe	tences:	
The students:		
 acquire knowledge in the 	field of materials testing and evaluation of	f composite materials.
 are introduced to importa 	nt concepts in measurement techniques, a	and material models applied to composites.
 are able to independently 	vacquire further information of the scientifi	ic topic using various forms of information.
Workload:		
Total: 180 h		
60 h lecture and exercise cours	e (attendance)	
	t through exercises / case studies (self-stu	ıdy)
	t using provided materials (self-study)	
20 h studying of course content	t using literarture (self-study)	
Conditions:		
	ge in materials science, particularly in	
composite materials		
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each summer semester	from 2.	1 semester[s]
each summer semester		
Contact Hours:	Repeat Exams Permitted:	
	Repeat Exams Permitted: according to the examination	

Parts of the Module

Part of the Module: Characterization of Composite Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Literature:

- Morgan: Carbon fibers and their composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe
- · Dowling: Mechanical behaviour of materials
- Issler: Festigkeitslehre Grundlagen
- Landau, Lifschitz: Theoretische Physik Vol. 7

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Part of the Module: Characterization of Composite Materials (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Examination

Characterization of Composite Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Characterization of Composite Materials

Materials Properties	Reinforced Composites: Processing and	ECTS Credits:
Version 1.0.0 (since SoSe15) Person responsible for module: Frau Dr. Judith Moosburger-Wi	-	
Contents: The following topics are treated	l:	
Physical and chemical pr	-	nic matrix materials
Learning Outcomes / Compe The students:	tences:	
materials.are introduced to physica	as of composite materials. ction technologies of fibers, polymeric, and cera Il and chemical properties of fibers, matrices, an acquire further knowledge of the scientific topic	d fiber reinforced materials.
ELECTIVE COMPULSORY MO	DDULE	
	t using provided materials (self-study) t through exercises / case studies (self-study)	
Conditions:		
Recommended: basic knowled	ge in materials science, basic lectures in	
Recommended: basic knowled organic chemistry Frequency:	ge in materials science, basic lectures in Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
Recommended: basic knowled organic chemistry Frequency: each winter semester Contact Hours: 4	Recommended Semester:	

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties

Mode of Instruction: lecture

Language: English

Contact Hours: 3

- · Morgan: Carbon fibers and their composites
- Ehrenstein: Polymeric materials
- Krenkel: Ceramic Matrix Composites
- Henning, Moeller: Handbuch Leichtbau
- Schürmann: Konstruieren mit Faser-Kunstoff-Verbunden
- Neitzel, Mitschang: Handbuch Verbundwerkstoffe

Further litrature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (lecture)

Part of the Module: Fiber Reinforced Composites: Processing and Materials Properties (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Literature:

see lecture

Assigned Courses:

Fiber Reinforced Composites: Processing and Materials Properties (Tutorial) (exercise course)

Examination

Fiber Reinforced Composites: Processing and Materials Properties

written exam / length of examination: 90 minutes

Examination Prerequisites:

Fiber Reinforced Composites: Processing and Materials Properties

Module PHM-0165: Introduction t	o Mechanical Engineering	ECTS Credits:
Version 1.0.0 (since SoSe15) Person responsible for module: Prof. D Dr Ing. Johannes Schilp	r. Siegfried Horn	
Contents:		
The following topics are treated:		
 Statics and dynamics of objects Transmissions and mechanisms Tension, shear and bending more Hydrostatics Hydrodynamics Strength of materials and solid m Instrumentation and measurement Mechanical design (including kind) 	echanics nt	
Learning Outcomes / Competences: The students understand and are able • Engineering applications • Mechanical testing • Instrumentation • Mechanical design	to apply basic concepts of physics an	d materials science to:
Workload: Total: 180 h		
Conditions: none		
Frequency: each summer semester	Recommended Semester:	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Mechanical Engi	neering	

Mode of Instruction: lecture

Language: English

Contact Hours: 3

Part of the Module: Mechanical Engineering (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Examination

Introduction to Mechanical Engineering

written exam / length of examination: 90 minutes

Examination Prerequisites:

Introduction to Mechanical Engineering

	onal Polymers	ECTS Credits
Version 1.0.0 (since SoSe15)		
Person responsible for module:	Prof. Dr. Klaus Ruhland	
Contents:		
 Introduction to polymer sc 	ience	
 Elastomers and elastoplas 	stic materials	
 Memory-shape polymers 		
 Piezoelectric polymers 		
 Electrically conducting pol 	ymers	
 Ion-conducting polymers 		
 Magnetic polymers 		
Photoresponsive polymers		
-	er non-linear optical properties	
Polymeric catalysts		
Self-healing polymers		
 Polymers in bio sciences> 		
Learning Outcomes / Compete		
	ic materials can be designed and applied to	act in a smart manner on an external
mechanical, magnetic, electric, o	optical, thermal or chemical impact.	
Workload:		
Total: 180 h		
60 h lecture and exercise course	e (attendance)	
20 h studying of course content	using provided materials (self study)	
	using literarture (self-study)	
80 h studying of course content	using literarture (self-study)	
80 h studying of course content Conditions:	using literarture (self-study)	
80 h studying of course content Conditions: Recommended: Attendance to F	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II	
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik)))
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency:	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester:	Minimal Duration of the Module:
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2.))
Conditions:	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted:	Minimal Duration of the Module:
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester Contact Hours:	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
30 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester Contact Hours:	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted:	Minimal Duration of the Module:
30 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester Contact Hours: 4	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination	Minimal Duration of the Module:
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester Contact Hours: 4 Parts of the Module	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Functiona	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:
80 h studying of course content Conditions: Recommended: Attendance to F and MRM-0050 (Grundlagen de Frequency: each summer semester Contact Hours: 4 Parts of the Module Part of the Module: Functiona Mode of Instruction: lecture	using literarture (self-study) through exercises / case studies (self-study) PHM-0035 (Chemie I), PHM-0036 (Chemie II r Polymerchemie und -physik) Recommended Semester: from 2. Repeat Exams Permitted: according to the examination regulations of the study program	Minimal Duration of the Module:

Mode of Instruction: exercise course Language: English Contact Hours: 1

Examination

Functional Polymers

written exam / length of examination: 90 minutes

Examination Prerequisites:

Functional Polymers

Module PHM-0168: Modern Mo	etallic Materials	ECTS Credits: 6
Version 1.0.0 (since SoSe15)		
Person responsible for module: Pro	f. Dr. Ferdinand Haider	
Contents: Introduction		
Review of physical metallurgy		
Steels:		
 principles common alloying elements martensitic transformations dual phase steels TRIP and TWIP steels maraging steel electrical steel production and processing 		
Aluminium alloys:		
 2xxx 6xxx 7xxx Processing – creep forming, h 	nydroforming, spinforming	
Titanium alloys		
Magnesium cast alloys		
Superalloys		
Intermetallics, high entropy alloys		
Copper, brass, bronzes		
Metallic glasses		
Alloy design		
basic concepts	es: metallic alloys, their properties and how	these properties can be derived from
Workload: Total: 180 h 20 h studying of course content usin 80 h studying of course content thro 20 h studying of course content usin 60 h lecture and exercise course (a	bugh exercises / case studies (self-study) ng provided materials (self-study)	
Conditions:		
Recommended: Knowledge of phys	ical metallurgy and physical chemistry	
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: according to the examination regulations of the study program	

Parts of the Module

Part of the Module: Modern Metallic Materials

Mode of Instruction: lecture

Language: English

Contact Hours: 4

Literature:

Cahn-Haasen-Kramer: Materials Science and Technology

Original literature

Examination

Modern Metallic Materials

written exam / length of examination: 90 minutes

Examination Prerequisites:

Modern Metallic Materials

Module PHM-0196: Surfaces and	Interfaces II: Joining processes	ECTS Credits: 6
Version 1.1.0 (since WS15/16) Person responsible for module: Prof. D Dozenten: Prof. Dr. Siegfried Horn, Dr.	-	,
Learning Outcomes / Competences: The students		
	esion	
Workload: Total: 180 h		
Conditions: Basic knowledge on materials science, lecture "Surfaces and Interfaces I" Module Surfaces and Interfaces (PHM-0117) - recommended		Credit Requirements: Bestehen der Modulprüfung
Frequency: each summer semester	Recommended Semester: from 2.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 4	Repeat Exams Permitted: any	
Parts of the Module		
Mode of Instruction: lecture Lecturers: Prof. Dr. Siegfried Horn Language: German Contact Hours: 3		
Contents: The following topics are treated:		
 Introduction to adhesion Role of surface and interface prop Introduction to interactions at surfa Adhesion theories Surface and interface energy Surface treatment techniques Joining techniques Physical and chemical properties of Applications 	aces and interfaces	
Literature: Literature, including actual scientific	papers and reviews, will be announced	l at the beginning of the lecture.
Examination Surfaces and Interfaces II: Joining p written exam / length of examination Examination Prerequisites: Surfaces and Interfaces II: Joining p	n: 90 minutes	

Parts of the Module

Part of the Module: Übung zu Surfaces and Interfaces II: Joining processes

Mode of Instruction: exercise course

Language: German Contact Hours: 1

	structive Testing	ECTS Credits:
Version 1.0.0 (since WS14/15))
Person responsible for module:	PrivDoz. Dr. Markus Sause	
Contents:		
 Introduction to nondestruct 	tive testing methods	
 Visual inspection 		
 Ultrasonic testing 		
 Guided wave testing 		
 Acoustic emission analysis 	S	
Thermography		
Radiography		
Eddy current testing		
 Specialized nondestructive 	e methods	
Learning Outcomes / Compete	ences:	
The students		
 acquire knowledge in the f 	ield of nondestructive evaluation of materials	5,
 are introduced to importar 	t concepts in nondestructive measurement t	echniques,
 are able to independently 	acquire further knowledge of the scientific to	pic using various forms of information.
 Integrated acquirement of 	soft skills	
Workload:		
Total: 180 h		
	e (attendance)	
60 h lecture and exercise course		
60 h lecture and exercise course 20 h studying of course content	using provided materials (self-study)	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content	using provided materials (self-study)	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content	using provided materials (self-study) using literarture (self-study)	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions:	using provided materials (self-study) using literarture (self-study)	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials	Minimal Duration of the Module:
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency:	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester:	Minimal Duration of the Module:
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1.	Minimal Duration of the Module: 1 semester[s]
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester Contact Hours:	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester Contact Hours:	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester Contact Hours:	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted:	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester Contact Hours: 4	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester Contact Hours: 4 Parts of the Module	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destr	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destr Mode of Instruction: lecture	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Basic knowledge on materials so Frequency: each winter semester Contact Hours: 4 Parts of the Module Part of the Module: Non-Destr Mode of Instruction: lecture Language: English	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	
60 h lecture and exercise course 20 h studying of course content 20 h studying of course content 80 h studying of course content Conditions: Basic knowledge on materials so Frequency:	using provided materials (self-study) using literarture (self-study) through exercises / case studies (self-study) cience, in particular composite materials Recommended Semester: from 1. Repeat Exams Permitted: according to the examination regulations of the study program	

see module description

- Raj: Practical Non-destructive Testing
- Shull: Nondestructive Evaluation Theory and Applications
- Krautkrämer: Ultrasonic testing of materials
- Grosse: Acoustic Emission Testing
- Rose: Ultrasonic waves in solid media
- · Maldague: Nondestructive Evaluation of Materials by Infrared Thermography
- · Herman: Fundamentals of Computerized Tomography

Further literature - actual scientific papers and reviews - will be announced at the beginning of the lecture.

Assigned Courses:

Non-Destructive Testing (lecture)

Part of the Module: Non-Destructive Testing (Tutorial)

Mode of Instruction: exercise course

Language: English

Contact Hours: 1

Assigned Courses:

Non-Destructive Testing (Tutorial) (exercise course)

Examination

Non-Destructive Testing

written exam / length of examination: 90 minutes

Examination Prerequisites:

Non-Destructive Testing

Module PHM-0203: Physics of Calls	Cells	ECTS Credits: (
Physics of Cells		
Version 1.0.0 (since WS16/17) Person responsible for module: Prof.	Dr. Ashim Wivforth	
Dr. Christoph Westerhausen		
Contents:		
Physical principles in Biology		
Cell components: cell membra	ne, organelles, cytoskeleton	
Thermodynamics of proteins a		
 Physical methods and technique 	ues for studying cells	
	ecific, universal and elastic forces	
 Tensile strength and elasticity Micro mechanics of the cell 	of tissue - macromolecules of the extra	cellular matrix
Cell-cell-communication		
Cell migration		
Cell stimulation and cell-compt	uter-communication	
Learning Outcomes / Competence	s:	
The students		
 get to know a highly interdiscip 	linary field of physics.	
	operties of human cells, as building blo	cks of living organisms.
learn about the impact of force	-	
	ndamental biological processes. I questions and define model systems t	o answer these questions
The students learn the following key		
 self-dependent working with Ei 		
 presentation techniques. 		
 documentation of experimenta 	l results.	
 interdisciplinary thinking and w 		
Workload:		
30 h studying of course content throu	ugh exercises / case studies (self-study))
20 h studying of course content using		
20 h studying of course content using		
60 h lecture and exercise course (att		Credit Deguirementer
Conditions: Mechanics, Thermodynamics		Credit Requirements: Bestehen der Modulprüfung
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each winter semester	from 1.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
4	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Physics of Cel	ls	
Mode of Instruction: lecture		

Language: English / German

Contact Hours: 2

Learning Outcome: see module description Contents: see module description Literature: • Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010. • Nelson, Philip. Biological physics. New York: WH Freeman, 2004. • Boal, D. Mechanics of the Cell. Cambridge University Press, 2012. • Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents: see module description
Contents: see module description Literature: • Sackmann, Erich, and Rudolf Merkel. <i>Lehrbuch der Biophysik</i> . Wiley-VCH, 2010. • Nelson, Philip. <i>Biological physics</i> . New York: WH Freeman, 2004. • Boal, D. <i>Mechanics of the Cell</i> . Cambridge University Press, 2012. • Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
see module description Literature: • Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010. • Nelson, Philip. Biological physics. New York: WH Freeman, 2004. • Boal, D. Mechanics of the Cell. Cambridge University Press, 2012. • Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description
Literature: • Sackmann, Erich, and Rudolf Merkel. <i>Lehrbuch der Biophysik</i> . Wiley-VCH, 2010. • Nelson, Philip. <i>Biological physics</i> . New York: WH Freeman, 2004. • Boal, D. <i>Mechanics of the Cell</i> . Cambridge University Press, 2012. • Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
 Sackmann, Erich, and Rudolf Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010. Nelson, Philip. Biological physics. New York: WH Freeman, 2004. Boal, D. Mechanics of the Cell. Cambridge University Press, 2012. Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
 Nelson, Philip. <i>Biological physics</i>. New York: WH Freeman, 2004. Boal, D. <i>Mechanics of the Cell</i>. Cambridge University Press, 2012. Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Boal, D. Mechanics of the Cell. Cambridge University Press, 2012. Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Lecture notes Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Assigned Courses: Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Physics of Cells (lecture) Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Part of the Module: Physics of Cells (Tutorial) Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Mode of Instruction: exercise course Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Language: English Contact Hours: 2 Learning Outcome: see module description Contents:
Contact Hours: 2 Learning Outcome: see module description Contents:
Learning Outcome: see module description Contents:
see module description Contents:
Contents:
see module description
Literature:
see module description
Assigned Courses:
Physics of Cells (Tutorial) (exercise course)
Examination

Physics of Cells

oral exam / length of examination: 30 minutes

Module PHM-0169: Masterthesis		ECTS Credits: 26
Version 1.0.0 (since SoSe15) Person responsible for module:	Prof. Dr. Dirk Volkmer	
Contents: According to chosen topic		
Remarks: COMPULSORY MODULE		
Workload: Total: 780 h 260 h studying of course content 520 h lecture and exercise cours	t using provided materials (self-study) se (attendance)	
Conditions: To begin with the Masterthesis students must have acquired 72 CP from modules consisting of the modulgroups 1a - 5.		Credit Requirements: written thesis
Recommended: according to the	e respective advisor	
Frequency: each semester	Recommended Semester: from 4.	Minimal Duration of the Module: 1 semester[s]
Contact Hours: 1	Repeat Exams Permitted: according to the examination regulations of the study program	
Parts of the Module		
Part of the Module: Masterthes Language: English	sis	
Learning Outcome: see description of module		
Contents: see description of module		
Examination Masterthesis Master's thesis Examination Prerequisites:		

Module PHM-0170: Collog	ECTS Credits: 4	
Version 1.0.0 (since SoSe15)		
Person responsible for module	: Prof. Dr. Dirk Volkmer	
Contents:		
According to the respective Ma	asterthesis	
Remarks: COMPULSORY MODULE		
Workload:		
Total: 120 h		
80 h lecture and exercise cour		
40 h studying of course conten	t using provided materials (self-study)	
Conditions: submission of the masterthesis	5	
Frequency:	Recommended Semester:	Minimal Duration of the Module:
each semester	from 4.	1 semester[s]
Contact Hours:	Repeat Exams Permitted:	
1	according to the examination	
	regulations of the study program	
Parts of the Module		
Part of the Module: Colloquin Language: English	um	
Learning Outcome: see description of module		
Contents: see description of module		

Colloquium

seminar / length of examination: 20 minutes, not graded

Examination Prerequisites:

Colloquium